
Scalable Semantics – the Silver Lining of Cloud Computing

Andre Newman, Yuan-Fang Li and Jane Hunter

School of ITEE, The University of Queensland
4072 Queensland, Australia

{anewman,liyf,jane}@itee.uq.edu.au

Abstract

Semantic inferencing and querying across large-

scale RDF triple stores is notoriously slow. Our objec-
tive is to expedite this process by employing Google’s
MapReduce framework to implement scale-out distri-
buted querying and reasoning. This approach requires
RDF graphs to be decomposed into smaller units that
are distributed across computational nodes. RDF Mo-
lecules appear to offer an ideal approach – providing
an intermediate level of granularity between RDF
graphs and triples. However, the original RDF mole-
cule definition has inherent limitations that will ad-
versely affect performance. In this paper, we propose a
number of extensions to RDF molecules (hierarchy and
ordering) to overcome these limitations. We then
present some implementation details for our MapRe-
duce-based RDF molecule store. Finally we evaluate
the benefits of our approach in the context of the Bio-
MANTA project – an application that requires integra-
tion and querying across large-scale protein-protein
interaction datasets.

1. Introduction

Semantic Web technologies such as RDF, OWL and
SPARQL offer significant potential as technologies
designed to support the integration of and reasoning
across heterogeneous, disparate data sources. The
widespread adoption of these technologies is being
driven by the need to answer complex queries that de-
mand the integration and processing of multiple re-
lated, but disparate, multidisciplinary datasets. Datasets
from disciplines including environmental sciences,
biological sciences, social sciences, life sciences and
health care sciences have been employing these tech-
nologies to facilitate data correlation, integration and
reasoning.

However, despite the widespread adoption of RDF,
OWL and SPARQL within many disciplines and ap-
plications, there remain two major challenges to the
seamless integration of large-scale distributed datasets:

1. Efficient scalable RDF querying and reason-
ing;

2. Object co-identification or co-reference –
identifying when entries across datasets are
the same.

These issues are particularly problematic within the
life sciences domain that typically involves multiple,
large-scale datasets generated by independent organi-
zations and communities. The W3C’s Semantic Web
Health Care and Life Sciences Interest Group
(HCLSIG)1recently identified co-identification and
poor reasoning performance as two of the greatest
challenges to the adoption of Semantic Web technolo-
gies in the life sciences [21].

1.1. Distributed, Real-time Processing of

Large-scale RDF Data
Large-scale data integration places high demands on

processing, storage and querying. Distributed process-
ing in a clustered environment offers a low cost, high
performance approach to processing massive amounts
of RDF instance data (billions or trillions of triples).

Cloud computing, in particular Google’s Map-
Reduce architecture [7],provides mechanisms to sup-
port distributed processing over extremely large data-
sets using a cluster of commodity-grade hardware. Da-
ta is broken into smaller units and each compute node
processes its local copy of data. These results are then
combined to obtain the complete answer. MapReduce
has been successfully deployed within Google on a
number of large-scale tasks including the indexing of
web pages and has been shown to be a highly reliable,
scalable and economical architecture. Our aim is to

1 http://www.w3.org/2001/sw/hcls/

investigate methods by which Map-Reduce could be
used to expedite querying and reasoning over large-
scale RDF triple stores.

Hadoop2 is an open-source software platform that
implements the MapReduce architecture. It is used by
Yahoo!, IBM, Facebook and Amazon and can be used
on Amazon’s Elastic Compute Cloud (EC2)3. We pro-
pose a Hadoop-based, distributed RDF molecule store
that:

• Breaks an RDF graph into smaller units that can
be distributed and indexed across nodes in a
cluster;

• Queries each node in the cluster using SPARQL
as the query language;

• Merges the query results from each node to
generate the search results.

RDF molecules [8] enable lossless decomposition
and merging of RDF graphs, while maintaining RDF
semantics, suitable for distributed processing in a Ma-
pReduce architecture. They provide “the finest compo-
nents in which an RDF graph can be decomposed
without loss of information” [8]. Hence RDF mole-
cules:

• Provide a method to enable distribution of RDF
graphs across compute nodes;

• Enable query results to be aggregated from
many nodes;

• Provide a minimal dataset to synchronize graph
modifications;

• Provide a way to differentiate blank nodes
based on their “context”.

In the original definition of RDF molecules, an RDF
graph is decomposed into a set of molecules each con-
sisting of a set of triples. However this original design
lacks (a) the ability to disambiguate a triple with two
blank nodes (subject and object); (b) representation of
the structure of triples from the original graph; and (c)
the ability to leverage certain efficiencies that are
available.

We propose extending the original RDF molecule
definition by adding hierarchy and ordering to mitigate
the above drawbacks. By having hierarchical, nested
molecules, triples with two blank nodes can be diffe-
rentiated according to their “context” in the enclosing
molecule. Moreover, the merging of molecules can be
made more efficient by imposing a lexicographical and
“groundedness” ordering over triples.

1.1. The Co-Identification Problem and

Blank Nodes

2 http://hadoop.apache.org/
3 http://aws.amazon.com/ec2

One of the key challenges for the Semantic Web is
the object co-identification [10]problem. Data integra-
tion is made more complicated because different data
sources often use different naming conventions for the
same object. A mechanism is needed to identify two
equivalent objects and to map between their identifiers.
Within the Life Sciences domain, this problem is wide-
ly recognized and not easily resolved. The difficulty is
that key, large-scale protein databases such as UniProt,
DIP [23], IntAct [14] and MPact [11] each employ
different naming conventions – both for proteins and
their various attributes. A single protein may be anno-
tated with a variety of properties including different
accession IDs, labels, its genomic sequence, the host
organism, publication information, etc. A protein may
participate in interactions with another protein in ob-
served experiments, and be documented in a variety of
databases. The harmonization of such databases and
their respective ontologies is a significant research
challenge for the Semantic Web community and has
been the focus of a number of research projects [5, 24,
25]. In particular, previous attempts to standardize
naming and identification (e.g., LSIDs [22]) have had
limited beneficial impact [9]. We believe that inventing
another naming convention or trying to reach a consen-
sus will not solve the identification problem[12]. We
reject the idea of creating yet another URI to create a
co-reference bundle [13], instead we propose an iden-
tity reconciliation process for the “life sciences identi-
fier problem” based on RDF blank nodes.

Our approach uses RDF blank nodes to represent
real-world entities. A blank node is used to represent a
specific protein; and the properties of this protein, in-
cluding various identifiers from different databases, are
modeled as triples with this blank node as the subject.
Although RDF blank nodes have previously been
demonstrated to provide a useful approach to the object
co-identification problem [4], they also introduce a
number of associated problems that arise during RDF
graph decomposition and merging. The most signifi-
cant problem is that RDF blank nodes are only unique-
ly identifiable within their enclosing graph - they are
not globally addressable. The implication is that break-
ing down an RDF graph that contains blank nodes will
incur loss of information. Overcoming this problem
will require a number of extensions to RDF molecules
that are described in detail in Section 3.

1.3. The BioMANTA project

BioMANTA is a collaborative project between

Pfizer Research and the University of Queensland that
is applying Semantic Web technologies to the model-
ing of biological pathways and protein-protein interac-

tion data. It aims to enable in silico drug discovery and
development by identifying candidate therapeutic tar-
gets through the analysis of integrated datasets that
relate molecular interactions and biochemical pathways
to physiological effects such as toxicology and gene-
disease associations. As such, BioMANTA is integrat-
ing data from protein datasets such as MPact, DIP,
IntAct and MINT [3] via a common model/ontology,
the BioMANTA OWL-DL ontology[6, 19]. Conform-
ing to the BioMANTA ontology, protein datasets are
converted to RDF instances and stored in a distributed
RDF triple store where they are available for subse-
quent analysis and querying.

Figure 1 below shows RDF triples about a yeast
protein with UniProt ID “Q12522”, together with other
information such as host species, genomic sequence,
external references, etc., that are compliant with our
BioMANTA ontology.

Figure 1. RDF triples about a yeast protein.

The molecular biologists, with whom we are colla-
borating, want rapid responses to queries such as
“Show me all the human kinases expressed in the liver
that are strongly inhibited by at least two compounds
and are localized to the nucleus”. Such queries are po-
tentially very slow to execute as they involve many
joins and may generate an RDF graph that exceeds
available memory. Consequently, the BioMANTA
project provides us with an ideal testbed application
and end-user group for evaluating our Scale-Out RDF
Molecule Store.

1.4. Objectives

The high-level objectives of the work described in
this paper are to investigate solutions to the problems
of: the ability for an RDF molecule store to decom-
pose, merge and process RDF data, co-identification
and semantic querying. The more specific objectives
are to investigate and evaluate: (a) methods by which
the MapReduce scale-out architecture can be used to
improve the performance of semantic querying and
inferencing over large-scale RDF triples; (b) the adop-
tion of RDF molecules for decomposing and distribut-
ing of RDF graphs across computational nodes in the
architecture; (c) the use of blank nodes to resolve the
co-identification problem; and (d) extensions to RDF

molecules to overcome problems of ambiguity, data
loss and inefficiency introduced by blank nodes.

The remainder of the paper is organized as follows.
In Section 2 we discuss related work. Section 3 pro-
vides a description of our extensions to RDF molecules
to support hierarchy and ordering. Section 4 describes
the system implementation using BioMANTA data and
describes: (a) graph decomposition into molecules; (b)
SPARQL querying across molecules; and (c) molecule
merging to construct new RDF graphs based on que-
ries. In Section 5, we present the initial results of the
system’s performance of graph decomposition and
merging, distributed loading and SPARQL querying.
Finally, we present our conclusions in Section 6.

2. Previous Related Works

Apart from our own previous work [18], there have
also been a number of similar or related approaches to
support scalable semantic querying across large RDF
triple stores. Abadi et al. and Muster [1,
17]investigated improving RDF query performance
through the use of column databases that vertically
partition the data. This approach improves query per-
formance for certain types of data and uses a very simi-
lar indexing approach to our proposal but does not take
advantage of multiple compute nodes in a cluster.

Other work has suggested ways to increase the utili-
ty of MapReduce by adding a Merge stage to provide a
relationally complete scale-out system [28]. A similar,
but alternative idea is found in Yahoo’s Pig Latin [20].
Both of these systems could be used to store and
process RDF by treating RDF as tuples. The drawback
with both of these approaches is that they are “batch”
oriented and not real-time.

In addition, there has been previous relevant work
in the area of RDF graph decomposition. Proposals
such as Named Graphs [2], Concise Bounded Descrip-
tion (CBD) [26] and Minimum Self-contained Graphs
(MSG) [27] all attempt to decompose a graph into
smaller units. Figure 2 visualizes their relationship.
However, they all have their respective disadvantages.
In comparison, RDF molecules[8]provide the best ap-
proach for our MapReduce RDF store as they ensure
automated, unambiguous and lossless decomposition
and an optimal level of granularity.

U niversa l G raph

R DF Docum ent

Nam ed G raph

M olecule

Trip le

Figure 2. Granularity of RDF constructs including RDF

Molecules (from [8]).

3. Extended RDF Molecules

In this section, we describe how we augment RDF
molecules with hierarchy and ordering to alleviate cer-
tain drawbacks associated with the original molecules
definition.

3.1. RDF Molecules

Formally, given an RDF graph G and a background
ontology W, a pair of operators (d, m) is defined for
decomposition and merging.

M = d(G,W)
G’ = m(M,W)

(1)

Where, M is the set of molecules as the result of de-
composition of G with regards to W using decomposi-
tion operator d. The merging operator m merges M
back to an equivalent graph G’, also with respect to the
background ontology W. The set of molecules M are
mutually independent in the sense that no blank node is
shared among them. Hence, they can be individually
processed and later merged to construct the RDF graph
G’ losslessly.

Two types of decomposition were defined: naïve
decomposition, in which no background ontology is
consulted; and functional decomposition, in which an
OWL ontology is queried for functional dependency
between nodes.

The following graph and diagram in Figure 3 con-
sists of 6 triples (in N3 format) that model a physical
interaction between two proteins (:_3 and _:4),
represented as blank nodes.

Figure 3. A simple RDF graph modeling a Protein-

Protein Interaction (PPI).
The naïve decomposition results in a single mole-

cule consisting of all the above triples since they are
connected by blank nodes. This process maintains ex-
isting RDF semantics such as reification, containers,
collections and blank nodes as existential variables.
The later is demonstrated in Section 5 where molecule

merging is demonstrated as a way to maintain lean
versions of RDF graphs.

3.2. Extensions to RDF Molecules

RDF molecules have a number of inherent limita-
tions that need to be overcome for efficient merging
and decomposition. As the top figure of Figure 3
shows the absence of hierarchy in the original RDF
molecule definition makes it difficult or even impossi-
ble to distinguish triples {_:2 participant _:3}
and {_:2 participant _:4} . Moreover, the ab-
sence of ordering prevents certain important perfor-
mance benefits including rapid retrieval of triples. In
the following subsections, we present our extensions of
RDF molecules that mitigate these problems.

3.2.1. Hierarchies of Molecules. Extended with
hierarchies, a molecule consists of the following
components: (a) a head triple, which is the
lexicographically largest and most grounded triple, as
defined in Section 3.2.2, from the set of root triples;
(b) root triples, the set of head triples of submolecules;
and (c) a number of submolecules (optional), where
each of the submolecules has a head triple in turn.

3.2.2. Ordering of Molecules. The ordering of
molecules is determined by comparison of their head
triples. The ordering of two triples is based on the
comparison of their nodes in turn. If subject nodes are
equal, predicate nodes are compared. If predicate nodes
are equal as well, object nodes are finally compared.

For two nodes, the lexicographical ordering is de-
termined by the following rules,

• Node type - Blank node < URI reference node <
Literal node

• Node value - String comparison of node values
(“a”< “b”< “c”…)

The comparison of two molecules is based on the
comparison of their head triples. For molecules mole-
cule1 and molecule2and their head triples t1 and t2, mo-
lecule1 �molecule2 iff t1�t2, where the symbol
�represents<, = or>. Molecule comparison can be
extended to include comparing root triples and submo-
lecules – this is used during graph merging and mole-
cule subsumption.

Example. Based on the extended molecule defini-
tion, the graph in Figure 3 is decomposed into the mo-
lecule shown in Figure 4. Note that this molecule has
three hierarchies and the second root triple contains
two submolecules. The blank nodes (_:3 and _:4) in
these two submolecules are distinguishable because of
the hierarchies.

{_:1 type ExperimentalObservation}
{_:1 observedInteraction _:2}
{_:2 participant _:3}
{_:3 hasUniprotID ‘p32379’}
{_:2 participant _:4}
{_:4 hasUniprotID ‘p46949’}

{ _:1 type ExperimentalObservation }
{ _:1 observedInteraction _:2 }

{ _:2 participant _:3 }
{ _:3 hasUniprotID ‘p32379’ }

{ _:2 participant _:4 }
{ _:4 hasUniprotID ‘p46949’’ }

Figure 4. RDF molecule decomposition of graph shown
in Figure 3.

4. Implementation Details

In this section, we describe the actual testbed sys-
tem (Section 4.1) and the system components that we
have implemented, including graph decomposition,
RDF molecule merging and SPARQL querying across
RDF molecules.

4.1. The BioMANTA Testbed

For the purpose of the BioMANTA project, we in-
itially selected datasets from DIP, IntAct, MINT and
MPact. In our previous work [19], we developed an
integration process to (a) represent the datasets as RDF
instances compliant with the BioMANTA ontology
and (b) integrate the PPI RDF instances to form new
RDF graphs based on UniProt IDs and genomic se-
quences of proteins, which are represented as RDF
blank nodes. The integrated RDF graphs were subse-
quently decomposed into molecules, distributed across
the molecule store and queried.

In protein-protein interaction (PPI) networks, a pro-
tein has a number of identifiers, external references, a
genomic sequence string, and a host organism. The
protein may also participate in interactions with other
proteins. As discussed in Section 2, blank nodes are
used to represent proteins, interactions, external refer-
ences, etc. Hence, each protein and all of its associated
information will belong to a single molecule, as shown
in Figure 5, which illustrates the corresponding RDF
molecule of the triples in Figure 1. It shows the lexico-
graphical and “groundedness” ordering of the triples
and differentiates_:Xref1 and _:Xref2 based on
hierarchy.

_:Protein FullName “Eukaryotic …”
_:Protein Sequence “MATR…”
_:Protein ShortName “eLF-6 ”
_:Protein Synonym “CDC95”
_:Protein CrossReference _:Xref1
 _:Xref1 Accession “Q12522”
 _:Xref1 Database “UniProt ”
_:Protein CrossReference _:Xref2
 _:Xref1 Accession “YPR016C”
 _:Xref1 Database “MIPS”

Figure 5. The RDF molecule corresponding to a sim-
plified yeast protein shown in Figure 1.

Our molecular biologist collaborators identified a
set of queries that may reveal previously unrecognized
protein-protein interactions. For instance, the query
“Find all yeast protein-protein interactions that are
known to be localized to the endosomal system” helps

biologists to filter protein-protein interactions (PPIs)
integrated across the Gene ontology, the NCBI tax-
onomy and PPI datasets. Given the size of the PPI data
and associated datasets (well over 1 billion triples),
only a distributed processing environment is capable of
integrating and querying on this scale.

4.2. Indexing and Querying

Each node in the cluster contains a local, persistent
store designed to merge new data and respond to
SPARQL queries. Our indexing scheme takes each
permutation of an RDF triple (subject, predicate and
object) and adds a molecule ID (spom, posm, ospm).
Two other indices consisting of a molecule ID (m),
parent molecule ID (i), and triple (imspo and spoim)
are used to recreate the structure of an RDF molecule.
A Molecules ID uniquely identifies the set of root
triples for the molecule with the ID (0 indicates that the
triple is not part of a molecule). A Parent ID indicates
the molecule ID of the containing molecule (or 0 if it is
not a submolecule). This supports efficient addition,
retrieval and removal of molecules in the molecule
store. An RDF Molecule API allows molecules to be
added, removed, and found and an adaptor provides an
RDF API and SPARQL query functionality.

We have implemented both an in-memory and an
on-disk SPARQL query engine with RDF molecules
based on the open-source JRDF4 project. Graph match-
ing is performed locally and answers are combined to
provide the final query result. Future development of
additional index adaptors would allow query engines
from other RDF triple stores to be reused.

4.3. Graph Decomposition and Molecule
Merging

In our approach, we adopted the naïve decomposi-
tion algorithm for its simplicity, efficiency and robust-
ness. This algorithm computes connected components
only through edges that connect two blank nodes. Giv-
en an RDF graph, the naïve decomposition algorithm
decomposes it into a set of RDF molecules, which do
not share blank nodes and are therefore mutually inde-
pendent.

The molecule store merges two molecules if one
molecule contains all the properties (or more) of
another molecule. In this way, as more molecules are
added, redundant molecules are removed (or never
added) allowing results from multiple nodes from a
query to be merged.

4 http://jrdf.sourceforge.net/

The computational complexity of naïve decomposi-
tion and molecule merging are both O(n).For brevity
reasons, the detailed analysis is not presented.

5. Evaluation Results

We have implemented both the in-memory local
version and on-disk Hadoop version of the RDF mole-
cule store. In this section, we provide initial perfor-
mance evaluation results for the critical steps in our
methodology: RDF graph decomposition, RDF mole-
cule merging and SPARQL querying.

5.1. Graph Decomposition and RDF
Molecule Merging

The graph decomposition and merging algorithms

described in the previous section are critical compo-
nents of the distributed RDF molecule store. In this
subsection, we evaluate the performance of these algo-
rithms by comparing it with Jena [15]. Applied sequen-
tially, the two algorithms can decompose an RDF
graph into a set of RDF molecules, and then merge
them back to form an equivalent graph. Jena is, to the
best of our knowledge, the only RDF triple store that
provides similar functionality by performing graph
equivalence testing.

A set of RDF graphs was created for comparison
and the time taken to determine equivalence was
measured. The graphs contain triples that have chain-
ing blank nodes, e.g., _:1 p1 _:2 , _:2 p2 _:3 ,
_:3 p3 _:4 . For example, Table 1 (a) below shows
that Jena takes 0.05 seconds to perform the graph equi-
valence test when the chain depth is 3 and chain size is
10 (total graph size is 30). Note that DNF stands for
“Did Not Finish” (> 900 seconds).

Table 1. Time measurement of Jena and molecule on
graph equivalence (in seconds).

Jena Depth=3 5 10 20

Chain size =10 0.05 0.07 0.1 0.3
100 0.2 0.4 1.8 9.2

1000 13.1 37.7 197.7 DNF

10000 DNF DNF DNF DNF

(a) Time measurement for Jena.
(b)

Molecule Depth=3 5 10 20

Chain size=10 0.06 0.09 0.1 0.2

100 0.2 0.3 0.4 0.7

1000 0.9 1.3 2.5 5.0

10000 7.7 13.0 26.4 57.4

(b) Time measurement for RDF molecules.
The RDF molecule approach is faster as the number

of chains reaches 100. The RDF molecule implementa-
tion gives consistently superior performance as both
the number of chains and chain depth increase. When
chain depth is at least 10 and number of chains is at

least 100 (i.e., graph size is at least 1,000), the mole-
cule implementation performs orders of magnitude
better than Jena, with Jena not being able to determine
equivalence for graph sizes over 20,000. Also note that
with the increase of chain size and depth the perfor-
mance of molecule implementation exhibits linear de-
gradation, which is in line with our complexity analy-
sis of the algorithms.

5.2. MapReduce Performance

MapReduce tasks are used to populate the distri-
buted RDF molecule store. The map task converts data
files from PSI-MI format to individual RDF molecule
graphs. The reduce task collects generated molecules
and puts them in the persistent, distributed molecule
store. A series of tests were performed to evaluate the
loading time of the distributed molecule store on both a
2-node and a 3-node cluster (individual nodes have
identical setup).

The MapReduce tasks were run multiple times us-
ing 10 input files (a total of 4,015,778 triples and
222,419 molecules). Table 2 summarizes the dataset
sizes and performance of the various tasks on the two
clusters. Note that the last two columns represent the
time taken (in seconds) on the 2-node and 3-node clus-
ter, respectively. A number of observations are worth
discussing:

• Tasks 2 and 3 take roughly the same time, de-
spite the fact that task 3 handles 48% more
triples and 14% more molecules.

• There is a 100% increase in the time taken from
task 3 to task 4, although task 4 only handles
44% more triples.

On the 3-node cluster, tasks 4, 5, 6 and 7 take com-
parable amount of time to complete, although there is a
significant increase in the sizes of the tasks.

Table 2. Time measurements of various MapReduce
tasks on two clusters.

Task no. # triples # molecules 2-node cluster 3-node cluster

1 363,308 10,387 201 165
2 1,164,446 73,357 899 829

3 1,727,754 83,744 995 895

4 2,488,024 138,675 1872 1,784

5 2,851,332 149,062 2041 1,789

6 3,652,470 212,032 2098 1,883

7 4,015,778 222,419 2692 1,994

The above performance characteristics are due to
the nature of the MapReduce framework, in which the
map and reduce phases execute in sequence: no reduce
task can start unless all map tasks have been finished.
Therefore, a very large single input file in the map
phase in tasks 4, 5, 6 and 7 dominated their running
time. Preprocessing of input files to break them into
smaller chunks can help to bring down the time taken
by the map phase. Figure 6 gives a more intuitive view

of the running time of the different tasks. Horizontal
axis represents the number of triples (in 1,000) and the
vertical axis represents time (in seconds).

As shown in Figure 6, with the increase of data size,
the 3-node cluster shows greater scalability. When
triple number exceeds 2 million, the 3-node cluster
exhibits constant rate of slowdown whereas the 2-node
cluster slowdowns considerably when processing 4
million triples. It shows that small clusters do not take
full advantage of the MapReduce framework as per-
formance suffer from communication overhead and
node balancing. We expect that a larger cluster will
amortize these overheads and be much more scalable.

The distributed RDF molecule store takes up around
0.5 GB disk space per million triples. This is due to the
fact that more indexing information is maintained for
RDF molecules and no compression or other space-
saving optimizations have been applied at this time.
Previous modeling [16] has shown the response time of
Nutch is essentially constant as the number of servers
reaches 2000 nodes with up to 40 GB of data per node.
We expect that our implementation of the on-disk, dis-
tributed RDF molecule store will conservatively reach
160 billion triples with a similar setup. Improving in-
dexing efficiency will easily boost its capacity.

5.3. SPARQL Query Responses

As mentioned in Section 4.2, our SPARQL query
engine has been developed by adapting the indexing
structure of our RDF molecule store so that it is com-
patible with the indexing structure of the JRDF triple
store. Hence, comparable query performance and
memory usage is expected. We ran the same SPARQL
query (see below) over the RDF molecule store and the
JRDF triple store using an RDF graph describing yeast
PPIs obtained and translated from the IntAct dataset.

The RDF graph contains 79,360 triples. The
SPARQL query finds all instances of the class “physi-
calEntity”, with an NCBI taxonomy ID 4932 and a
UniProt ID “o13516”. The query time (~18 seconds) is

almost the same for the two stores. As the cluster be-
comes larger, we can expect much better performance
relative to traditional RDF triple stores.

6. Conclusions

Efficient querying and inferencing across large-
scale integrated datasets drawn from many sources is a
challenge facing many communities. Semantic Web
technologies such as RDF, OWL and SPARQL are
ideal candidates for the task of data integration as they
offer open, unambiguous and extensible solutions. Dis-
tributed processing paradigms such as MapReduce
have demonstrated economic and practical ways to
process massive amounts (petabytes) of data. The
combination of MapReduce and Semantic Web tech-
nologies appears to offer a perfect solution to the prob-
lem of large-scale heterogeneous data integration, que-
rying and reasoning.

The co-identification problem introduces additional
complications. RDF blank nodes provide a novel way
of referring to equivalent entities without creating new
names. However, they introduce complications when
attempting to distribute RDF graphs across a MapRe-
duce architecture.

RDF graphs provide too coarse a granularity for ef-
fective processing, as the context of an entire graph is
needed to disambiguate RDF blank nodes. A finer gra-
nularity is required to support the distributed integra-
tion and processing of RDF data. RDF molecules pro-
vide a finer grained solution to the semantic integration
and distribution/decomposition problem and enables
MapReduce processing. We developed optimized algo-
rithms to losslessly decompose an RDF graph into a set
of smaller “molecules” and subsequently merge them.
This process revealed that the presence of RDF blank
nodes can cause problems of data loss, integrity loss,
ambiguity and slow performance. Consequently, we
extended the definition of RDF molecules to include
hierarchy and ordering. Hierarchy and ordering provide
structural information, efficient processing and data

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX biopax: <http://www.biopax.org/release/biopax-level2.owl#>

PREFIX biomanta:

<http://biomanta.sourceforge.net/2007/07/biomanta_extension_02.owl#>

PREFIX ncbi: <http://biomanta.sourceforge.net/2007/10/ncbi_taxo.owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?name ?id

WHERE {

 ?x rdf:type biopax:physicalEntity .

 ?x biomanta:fromNCBISpecies ncbi:ncbi_taxo_4932_ind .

 ?x biomanta:hasPrimaryRef ?y .

 ?y biopax:DB ?db .

 FILTER (str(?db) = "uniprotkb"^^xsd:string)

 ?y biopax:ID ?id .

 FILTER (str(?id) = "o13516"^^xsd:string)

 ?x biomanta:hasFullName ?name .

}

Figure 6. Time measurement of MapReduce conversion
tasks.

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000

2-node cluster 3-node cluster

integrity checking and most importantly makes it poss-
ible to disambiguate blank nodes within a single mole-
cule.

Critical algorithms for decomposing an RDF graph
and merging RDF molecules have also been described,
implemented and evaluated. We compared RDF graph
decomposition and merging with Jena’s graph equiva-
lence checking algorithm and obtained promising re-
sults. We also ran SPARQL queries over the RDF mo-
lecule store and observed comparable performance to
the JRDF triple store for moderate numbers of RDF
triples. As greater numbers of triples are loaded into
the scale-out RDF molecule store and as the size of the
computational cluster grows, we can expect the per-
formance to increase relative to traditional RDF triple
stores.

7. References

[1] Abadi, D.J., et al. Scalable Semantic Web Data Man-

agement Using Vertical Partitioning. in VLDB 2007.
2007. University of Vienna, Austria.

[2] Carroll, J.J., et al., Named Graphs, Provenance and
Trust, in Proceedings of the 14th International Confe-
rence on World Wide Web. 2005, ACM: Chiba, Japan.
p. 613-622.

[3] Chatr-aryamontri, A., et al., MINT: the Molecular IN-
Teraction database. Nucleic Acids Res, 2007.
35(Database issue): p. 572-574.

[4] Chen, H., Z. Wu, and Y. Mao, RDF-Based Ontology
View for Relational Schema Mediation in Semantic
Web, in 9th International Conference on Knowledge-
Based Intelligent Information and Engineering Systems
(KES 2005). 2005: Melbourne, Australia. p. 873-879.

[5] Cheung, K.-H., et al., YeastHub: a semantic web use
case for integrating data in the life sciences domain.
Bioinformatics, 2005. 21(Supp. 1): p. 85-96.

[6] Davis, M., et al., Integrating Hierarchical Controlled
Vocabularies with OWL Ontology: A Case Study from
the Domain of Molecule Interactions, in 6th Asia Pacif-
ic Bioinformatics Conference (APBC08). 2008: Kyoto,
Japan.

[7] Dean, J. and S. Ghemawat, MapReduce: Simplified
Data Processing on Large Clusters, in Proceedings of
the 6th Conference on Symposium on Opearting Sys-
tems Design & Implementation. 2004, USENIX Asso-
ciation: San Francisco, CA. p. 137--150.

[8] Ding, L., et al., Tracking RDF Graph Provenance us-
ing RDF Molecules. 2005, UMBC.

[9] Good, B.M. and M.D. Wilkinson, The Life Sciences
Semantic Web is Full of Creeps! Briefings in Bioin-
formatics, 2006. 7(3): p. 275-286.

[10] Guha, R. Object co-identification on the Semantic Web.
in 13th World Wide Web Conference. 2004. New York,
USA.

[11] Güldener, U., et al., MPact: the MIPS protein interac-
tion resource on yeast. Nucleic Acids Res, 2006.
34(Database issue): p. 436-441.

[12] Halpin, H., Identity, Reference, and Meaning on the
Web. Proceedings of the Workshop on Identity, Mean-
ing and the Web (IMW06) at WWW2006, Edinburgh,
Scotland, 2006.

[13] Jaffri, A., H. Glaser, and I.C. Millard, Managing URI
Synonymity to Enable Consistent Reference on the Se-
mantic Web, in 1st International Workshop on Identity
and Reference on the Semantic Web (IRSW2008) 2008:
Tenerife, Spain.

[14] Kerrien, S., et al., IntAct--open source resource for
molecular interaction data. Nucleic Acids Res, 2007.
35(Database issue): p. D561-5.

[15] McBride, B., Jena: a semantic Web toolkit. IEEE In-
ternet Computing, 2002. 6(6): p. 55-59.

[16] Moreira, J.E., et al. Scalability of the Nutch Search
Engine. in Proceedings of the 21st Annual Internation-
al Conference on Supercomputing. 2007. Seattle,
Washington: ACM Press.

[17] Muster, P., Quantitative and Qualitative Evaluation of
a SPARQL Front-End for MonetDB, in Department of
Informatics. 2007, University of Zurich: Zurich.

[18] Newman, A., et al., A Scale-Out RDF Molecule Store
for Distributed Processing of Biomedical Data, in Se-
mantic Web for Health Care and Life Sciences Work-
shop (HCLS'08) at the 17th International Conference
on World Wide Web (WWW'08). 2008: Beijing, China.

[19] Newman, A., et al., BioMANTA Ontology: The Integra-
tion of Protein-Protein Interaction Data, in Interdiscip-
linary Ontology Conference (InterOntology08 Tokyo).
2008: Tokyo, Japan.

[20] Olston, C., et al., Pig Latin: A Not-So-Foreign Lan-
guage for Data Processing, in Proceedings of the 2008
ACM SIGMOD International Conference on Manage-
ment of Data. 2008, ACM: Vancouver, Canada.

[21] Ruttenberg, A., et al., Advancing Translational Re-
search with the Semantic Web. BMC Bioinformatics,
2007. 8(Suppl 3).

[22] Salamone, S., LSID: An Informatics Lifesaver. 2004.
[23] Salwinski, L., et al., The Database of Interacting Pro-

teins: 2004 update. Nucleic Acids Res, 2004.
32(Database issue): p. D449-51.

[24] Schroeter, R. and J. Hunter, Annotating Relationships
Between Multiple Mixed-Media Digital Objects by Ex-
tending Annotea, in Proceedings of the 4th European
Semantic Web Conference (ESWC 2007). 2007, Sprin-
ger: Innsbruck, Austria. p. 533-548.

[25] Stephens, S., A. Morales, and M. Quinlan, Applying
Semantic Web Technologies to Drug Safety Determina-
tion. IEEE Intelligent Systems, 2006. 21(1): p. 82-88.

[26] Stickler, P., CBD - Concise Bounded Description.
2005.

[27] Tummarello, G., et al., Signing Individual Fragments
of an RDF Graph, in Special interest tracks and post-
ers of the 14th international conference on World Wide
Web. 2005, ACM: Chiba, Japan. p. 1020-1021.

[28] Yang, H.-c., et al., Map-Reduce-Merge: Simplified
Relational Data Processing on Large Clusters, in Pro-
ceedings of the 2007 ACM SIGMOD International
Conference on Management of Data. 2007: Beijing,
China. p. 1029-1040.

