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Abstract However, despite the widespread adoption of RDF,

OWL and SPARQL within many disciplines and ap-

e- plications, there remain two major challenges te th
seamless integration of large-scale distributedstds:

1. Efficient scalable RDF querying and reason-

Semantic inferencing and querying across larg
scale RDF triple stores is notoriously slow. Oujjeah
tive is to expedite this process by employing Gasgl .
MapReduce framework to implement scale-out distri- Ing, . N
buted querying and reasoning. This approach recguire 2. Object co-identification or co-reference —
RDF graphs to be decomposed into smaller units that identifying when entries across datasets are
are distributed across computational nodes. RDF Mo- the same.

lecules appear to offer an ideal approach — pravidi i The;e issugs are p;rti::t:lar.ly ?Iroplen;atic Wihhg] th
an intermediate level of granularity between RDF e sciences domain hat typically Involves muep

graphs and triples. However, the original RDF mole- Iarge-scale datasets g_enerated by independen_tiorgan
cule definition has inherent limitations that w#ld- zations and communities. The W3C’s Semantic Web

. Health Care and Life Sciences Interest Group
versely affect performance. In this paper, we ps&pa . - - e
number of extensions to RDF molecules (hierarchdy an (HCLSIG)recently identified = co-identification and

ordering) to overcome these limitations. We then poor reasoning performance as two of the greatest
present some implementation details for our MapRe- challenges to the adoption of Semantic Web technolo

duce-based RDF molecule store. Finally we evaluate gies in the life sciences [21].

the benefits of our approach in the context of B L . .

MANTA project — an application that requires intagr ~ 1-1. Distributed, Real-time Processing of
tion and querying across large-scale protein-protei Large-scale RDF Data

interaction datasets. Large-scale data integration places high demands on
processing, storage and querying. Distributed p®ce
ing in a clustered environment offers a low cogghh
performance approach to processing massive amounts
of RDF instance data (billions or trillions of tigs).
SPARQL offer significant potential as technologies Reduce architecture [7],provides mechanisms to sup-
designed to support the integration of and reagpnin port distributed processing over extremely largeada
across heterogeneous, disparate data sources. Theets using a cluster of commodity-grade hardwaee. D
widespread adoption of these technologies is beingta is broken into smaller units and each computieno
driven by the need to answer complex queries that d processes its local copy of data. These resultshare
mand the integration and processing of multiple re- compined to obtain the complete answer. MapReduce
lated, but disparate, multidisciplinary datasetatéBets  has peen successfully deployed within Google on a
from disciplines including environmental sciences, number of large-scale tasks including the indesdfig
biological sciences, social sciences, life scieraed web pages and has been shown to be a highly ®liabl

health care sciences have been employing these techscalaple and economical architectu@ur aim is to
nologies to facilitate data correlation, integratiand

reasoning.

1. Introduction

1 http://mww.w3.0rg/2001/sw/hcls/



investigate methods by which Map-Reduce could be
used to expedite querying and reasoning over large-
scale RDF triple stores.

One of the key challenges for the Semantic Web is
the object co-identificatiorj10]problem. Data integra-
tion is made more complicated because differerd dat

Hadoop is an open-source software platform that sources often use different naming conventiongtfer
implements the MapReduce architecture. It is uged b same object. A mechanism is needed to identify two
Yahoo!, IBM, Facebook and Amazon and can be usedequivalent objects and to map between their idersif
on Amazon’s Elastic Compute Cloud (EE€2)Ve pro- Within the Life Sciences domain, this problem islevi
pose a Hadoop-based, distributed RDF molecule stordy recognized and not easily resolved. The difficu$
that: that key, large-scale protein databases such d3ratni

« Breaks an RDF graph into smaller units that can DIP [23], IntAct [14] and MPact [11] each employ

be distributed and indexed across nodes in adifferent naming conventions — both for proteinsl an

cluster,;

Queries each node in the cluster using SPARQL
as the query language;

Merges the query results from each node to
generate the search results.

RDF molecules [8] enable lossless decomposition
and merging of RDF graphs, while maintaining RDF
semantics, suitable for distributed processing Maa
pReduce architecture. They provide “the finest comp

their various attributes. A single protein may baa:

tated with a variety of properties including diat
accession IDs, labels, its genomic sequence, tsé ho
organism, publication information, etc. A proteirayn
participate in interactions with another proteinab-
served experiments, and be documented in a vafety
databases. The harmonization of such databases and
their respective ontologies is a significant reskar
challenge for the Semantic Web community and has

nents in which an RDF graph can be decomposedPeen the focus of a number of research projectg45,

without loss of information” [8]. Hence RDF mole-
cules:

* Provide a method to enable distribution of RDF
graphs across compute nodes;

Enable query results to be aggregated from
many nodes;

Provide a minimal dataset to synchronize graph
modifications;

Provide a way to differentiate blank nodes
based on their “context”.

In the original definition of RDF molecules, an RDF
graph is decomposed into a set of molecules eagh co
sisting of a set of triples. However this origimsign
lacks (a) the ability to disambiguate a triple witio
blank nodes (subject and object); (b) represemtaifo
the structure of triples from the original graphggc)
the ability to leverage certain efficiencies thakt a
available.

We propose extending the original RDF molecule
definition by adding hierarchy and ordering to gtie
the above drawbacks. By having hierarchical, nested
molecules, triples with two blank nodes can beediff
rentiated according to their “context” in the ersifgy
molecule. Moreover, the merging of molecules can be
made more efficient by imposing a lexicographiaad a
“groundedness” ordering over triples.

1.1. The Co-ldentification Problem and
Blank Nodes

2 http://hadoop.apache.org/
3 http://aws.amazon.com/ec2

25]. In particular, previous attempts to standadiz
naming and identification (e.g., LSIDs [22]) havadh
limited beneficial impact [9]. We believe that imtang
another naming convention or trying to reach a enns
sus will not solve the identification problem[12)e
reject the idea of creating yet another URI to twrea
co-reference bundle [13], instead we propose an-ide
tity reconciliation process for the “life scienceenti-
fier problem” based on RDBlank nodes

Our approach uses RDF blank nodes to represent
real-world entities. A blank node is used to reprtsa
specific protein; and the properties of this pnoten-
cluding various identifiers from different databsasare
modeled as triples with this blank node as theesibj
Although RDF blank nodes have previously been
demonstrated to provide a useful approach to tfecbb
co-identification problem [4], they also introduee
number of associated problems that arise during RDF
graph decomposition and merging. The most signifi-
cant problem is that RDF blank nodes are only wsiqu
ly identifiable within their enclosing graph - theye
not globally addressable. The implication is thasali-
ing down an RDF graph that contains blank nodek wil
incur loss of information. Overcoming this problem
will require a number of extensions to RDF molesule
that are described in detail in Section 3.

1.3. The BioMANTA project

BioMANTA is a collaborative project between
Pfizer Research and the University of Queenslaatl th
is applying Semantic Web technologies to the model-
ing of biological pathways and protein-protein naie



tion data. It aims to enabie silico drug discovery and
development by identifying candidate therapeutie ta
gets through the analysis of integrated dataseit th
relate molecular interactions and biochemical patfsv
to physiological effects such as toxicology andegen
disease associations. As such, BioMANTA is integrat

molecules to overcome problems of ambiguity, data
loss and inefficiency introduced by blank nodes.

The remainder of the paper is organized as follows.
In Section 2 we discuss related work. Section 3 pro
vides a description of our extensions to RDF mdiscu
to support hierarchy and ordering. Section 4 dbesri

ing data from protein datasets such as MPact, DIP,the system implementation using BIOMANTA data and

IntAct and MINT [3] via a common model/ontology,
the BioMANTA OWL-DL ontology[6, 19]. Conform-
ing to the BioMANTA ontology, protein datasets are
converted to RDF instances and stored in a dig&ibu

describes: (a) graph decomposition into molecyles;
SPARQL querying across molecules; and (c) molecule
merging to construct new RDF graphs based on que-
ries. In Section 5, we present the initial resoltghe

RDF triple store where they are available for subse system’s performance of graph decomposition and

guent analysis and querying.

merging, distributed loading and SPARQL querying.

Figure 1 below shows RDF triples about a yeast Finally, we present our conclusions in Section 6.

protein with UniProt ID “Q12522", together with @h

information such as host species, genomic sequence?. Previous Related Works

external references, etc., that are compliant with
BioMANTA ontology.

“Eukaryotic...factor 6” [

“elF-6” M “CDC95” M “MATR...” J

| "Q12522 J[ “YPR016C] ‘
Figure 1. RDF triples about a yeast protein.
The molecular biologists, with whom we are colla-

Apart from our own previous work [18], there have
also been a number of similar or related approathes
support scalable semantic querying across large RDF
triple stores. Abadi et al. and Muster [1,
17]investigated improving RDF query performance
through the use of column databases that vertically
partition the data. This approach improves queny pe
formance for certain types of data and uses a siafiy
lar indexing approach to our proposal but doegalat
advantage of multiple compute nodes in a cluster.

borating, want rapid responses to queries such as Other work has suggested ways to increase the utili

“Show me all the human kinases expressed in tleg liv
that are strongly inhibited by at least two compagin
and are localized to the nucleus”. Such queriepare

ty of MapReduce by adding a Merge stage to proaide
relationally complete scale-out system [28]. A &mi
but alternative idea is found in Yahoo's Pig Ld&0].

tentially very slow to execute as they involve many Both of these systems could be used to store and
joins and may generate an RDF graph that exceedsrocess RDF by treating RDF as tuples. The drawback

available memory. Consequently, the BioMANTA
project provides us with an ideal testbed applicati
and end-user group for evaluating @eale-Out RDF
Molecule Store

1.4. Objectives

with both of these approaches is that they arectjat
oriented and not real-time.

In addition, there has been previous relevant work
in the area of RDF graph decomposition. Proposals
such as Named Graphs [2], Concise Bounded Descrip-
tion (CBD) [26] and Minimum Self-contained Graphs
(MSG) [27] all attempt to decompose a graph into

The high-level objectives of the work described in smaller units. Figure 2 visualizes their relatiagpsh
this paper are to investigate solutions to the lprab However, they all have their respective disadvaedag
of: the ability for an RDF molecule store to decom- In comparison, RDF molecules[8]provide the best ap-
pose, merge and process RDF data, co-identificationproach for our MapReduce RDF store as they ensure
and semantic querying. The more specific objectives automated, unambiguous and lossless decomposition
are to investigate and evaluate: (a) methods bghvhi and an optimal level of granularity.
the MapReduce scale-out architecture can be used to
improve the performance of semantic querying and
inferencing over large-scale RDF triples; (b) tieo@:
tion of RDF molecules for decomposing and distribut
ing of RDF graphs across computational nodes in the
architecture; (c) the use of blank nodes to restiee
co-identification problem; and (d) extensions to RD

Universal Graph

RDF Document
Named Graph

Molecule

Figure 2. Granularity of RDF constructs including RDF
Molecules (from [8]).




3. Extended RDF Molecules merging is demonstrated as a way to maintain lean
versions of RDF graphs.
In this section, we describe how we augment RDF

molecules with hierarchy and ordering to alleviede- 3.2. Extensions to RDF Molecules
tain drawbacks associated with the original molesul

definition. RDF molecules have a number of inherent limita-
tions that need to be overcome for efficient meggin
3.1. RDF Molecules and decomposition. As the top figure of Figure 3

shows the absence of hierarchy in the original RDF
molecule definition makes it difficult or even imgs-

ble to distinguish tripleg :2 participant _:3}

and {_:2 participant _:4} . Moreover, the ab-
sence of ordering prevents certain important perfor
mance benefits including rapid retrieval of triplés
the following subsections, we present our exterssn
RDF molecules that mitigate these problems.

Formally, given an RDF grap® and a background
ontology W, a pair of operatorgd, m)is defined for
decomposition and merging.

M = d(G,W) (1)
G =m(M,W

Where,M is the set of molecules as the result of de-
composition ofG with regards tdV using decomposi-
tion operatord. The merging operatom mergesM
back to an equivalent grag$i, also with respect to the
background ontologW. The set of moleculesl are
mutually independent in the sense that no blankened
shared among them. Hence, they can be individually
processed and later merged to construct the RDFhgra
G’ losslessly.

Two types of decomposition were definetkive
decompositionin which no background ontology is
consulted; andunctional decompositignin which an ) )
OWL ontology is queried for functional dependency 3-2.2. Ordering of Molecules. The ordering of
between nodes. molecules is determined by comparison of their head

The following graph and diagram in Figure 3 con- triples. _The orderi_ng of two triples is t_)ased oe th
sists of 6 triples (in N3 format) that model a pbgb comparison of their nodes in turn. If subject nodes

3.2.1. Hierarchies of Molecules. Extended with
hierarchies, a molecule consists of the following
components: (a) ahead triple which is the
lexicographically largest and most grounded trigle,
defined in Section 3.2.2, from the setrobt triples;
(b) root triples the set ohead triplesof submolecules;
and (c¢) a number ofubmoleculeqoptional) where
each of the submolecules has a head triple in turn.

interaction between two proteins ¥ and _:4), equal, predicate nodes are compared. If prediazdes
represented as blank nodes. are equal as well, object nodes are finally comghare

(1 type ExperimentalObservation} For two nodes, the lexicographical ordering is de-
= e e action 2} termined by the following rules,

_;g 2:?&?&%“%?32379’} * Node type - Blank node < URI reference node <
(-4 hasUniprotiD ‘p46949'} Literal node

* Node value - String comparison of node values
("a"< "b"< “c"...)

_ The comparison of two molecules is based on the

observedinteraction comparison of their head triples. For molecutesle-

cule; and moleculgand their head triples andt,, mo-

Experimenta

10Observation “ype -1

i3 participant 474 participant _4 .
leculeg ®moleculg iff t;®t,, where the symbol
hasUniprotiD hasUngprotiD ®represents, = or>. Molecule comparison can be
032379 'p46949" extended to include comparing root triples and sabm

lecules — this is used during graph merging andemol
cule subsumption.
Example. Based on the extended molecule defini-

Figure 3. A simple RDF graph modeling a Protein-
Protein Interaction (PPI).
The haive decomposition resul'gs n a_smgle mole- tion, the graph in Figure 3 is decomposed intonttoe
cule consisting of all the above triples since tlaeg . i
connected by blank nodes. This process maintains ex €cUle shown in Figure.4Note that this molecule has
isting RDF semantics such as reification, container three hierarchies and the second root triple costai
collections and blank nodes as existential var@ble WO submolecules. The blank nodes3( and_:4 ) in

The later is demonstrated in Section 5 where mégecu these two submolecules are distinguishable becafuse
the hierarchies.



o e oemaor S5 y2ton } biologists to filter protein-protein interaction®RIls)

(2 pariciiant 3} orotiD p32378'} integrated across the Gene ontology, the NCBI tax-
{2 partcipant ) niprotiD 'p46949" } onomy and PPI datasets. Given the size of the &l d

Figure 4. RDF molecule decomposition of graph shown and associated datasets (well over 1 billion tsple
in Figure 3. only a distributed processing environment is capalbl

integrating and querying on this scale.

4. Implementation Details i )
4.2. Indexing and Querying

In this section, we describe the actual testbed sys ) _ _
tem (Section 4.1) and the system components that we Each node in the cluster contains a local, persiste
have implemented, including graph decomposition, Store designed to merge new data and respond to

RDF molecule merging and SPARQL querying across SPARQL queries. Our indexing scheme takes each
RDF molecules. permutation of an RDF triple (subject, predicatel an

object) and adds a molecule ID (spom, posm, ospm).
Two other indices consisting of a molecule ID (m),
parent molecule ID (i), and triple (imspo and sppim
are used to recreate the structure of an RDF mielecu
For the purpose of the BioMANTA project, we in- A Molecules ID uniquely identifies the set of root
itially selected datasets from DIP, IntAct, MINTdin triples for the molecule with the ID (0 indicatést the
MPact. In our previous work [19], we developed an triple is not part of a molecule). A Parent ID icalies
integration process to (a) represent the datase®Dé  the molecule ID of the containing molecule (or @ i
instances compliant with the BioMANTA ontology not a submolecule). This supports efficient additio
and (b) integrate the PPl RDF instances to form newretrieval and removal of molecules in the molecule
RDF graphs based on UniProt IDs and genomic se-store. An RDF Molecule API allows molecules to be
quences of proteins, which are represented as RDFadded, removed, and found and an adaptor provites a
blank nodes. The integrated RDF graphs were subseRDF APl and SPARQL query functionality.
quently decomposed into molecules, distributed scro We have implemented both an in-memory and an
the molecule store and queried. on-disk SPARQL query engine with RDF molecules
In protein-protein interaction (PPI) networks, @pr  pased on the open-source JRPFoject. Graph match-
tein has a number of identifiers, external refe%m(a |ng is performed |Oca||y and answers are combimed t
genomic sequence string, and a host organism. Theprovide the final query result. Future developmeht
protein may also participate in interactions withes  additional index adaptors would allow query engines
proteins. As discussed in Section 2, blank nodes ar from other RDF triple stores to be reused.
used to represent proteins, interactions, extenefak-
ences, etc. Hence, each protein and all of itscéstsal "
information will belong to a single molecule, a®wsim 4.3. _Graph Decomposition and Molecule
in Figure 5, which illustrates the correspondingiRD Merging
molecule of the triples in Figure 1. It shows thgito-

4.1. The BioMANTA Testbed

graphical and “groundedness” ordering of the teple In our approach, we adopted the naive decomposi-
and differentiatesxrefl and _:Xref2 based on tion algorithm for its simplicity, efficiency analbust-
hierarchy. ness. This algorithm computes connected components
—Protein FullName - “Eukaryotic ..” only through edges that connect two blank nodeg-: Gi
_:Protein Sequence MATR. . . .
_Protein ShortName ~ “eLF-6 en an RDF graph, the naive decomposition algorithm
el Ui decomposes it into a set of RDF molecules, which do
_iXrefl Accession “Q12522” not share blank nodes and are therefore mutuadig-in
_:Xrefl Database “UniProt ”
_:Protein CrossReference _:Xref2 pendent.
_:Xrefl Accession “YPRO16C’ H
“Xrefl Database MPS The molecule store merges two molecules if one
Figure 5. The RDF molecule corresponding to asim- ~ molecule contains all the properties (or more) of
plified yeast protein shown in Figure 1. another molecule. In this way, as more molecules ar

Our molecular biologist collaborators identified a added, redundant molecules are removed (or never
set of queries that may reveal previously unrecghi  added) allowing results from multiple nodes from a
protein-protein interactions. For instance, the rque query to be merged.

“Find all yeast protein-protein interactions thatke a
known to be localized to the endosomal system”selp

4 http://jrdf.sourceforge.net/



The computational complexity of naive decomposi- least 100 (i.e., graph size is at least 1,000),ntloge-
tion and molecule merging are bo@(n).For brevity cule implementation performs orders of magnitude

reasons, the detailed analysis is not presented. better than Jena, with Jena not being able to méter
equivalence for graph sizes over 20,000. Also tiwaé
5. Evaluation Results with the increase of chain size and depth the perfo

mance of molecule implementation exhibits linear de
gradation, which is in line with our complexity dya

We have implemented both the in-memory local sis of the algorithms.

version and on-disk Hadoop version of the RDF mole-
cule store. In this section, we provide initial foer
mance evaluation results for the critical stepoim 5.2. MapReduce Performance
methodology: RDF graph decomposition, RDF mole-
cule merging and SPARQL querying. MapReduce tasks are used to populate the distri-
buted RDF molecule store. Theaptask converts data
5.1. Graph Decomposition and RDF files from PSI-MI format to individual RDF molecule
Molecule Merging graphs. Theredu_cetask collfects gen_era_lted molecules
and puts them in the persistent, distributed mdéecu
store. A series of tests were performed to evaltise
The graph decomposition and merging algorithms |oading time of the distributed molecule store othba
described in the previous section are critical comp 2-node and a 3-node cluster (individual nodes have
nents of the distributed RDF molecule store. Irs thi jdentical setup).
subsection, we evaluate the performance of thege al The MapReduce tasks were run multiple times us-
rithms by comparing it with Jena [15]. Applied sequ  ing 10 input files (a total of 4,015,778 triplesdan
tially, the two algorithms can decompose an RDF 222 419 molecules). Table 2 summarizes the dataset
graph into a set of RDF molecules, and then mergesjzes and performance of the various tasks onvtoe t
them back to form an equivalent graph. Jena isheéo  clusters. Note that the last two columns represiest
best of our knowledge, the only RDF triple storatth time taken (in seconds) on the 2-node and 3-nag cl
provides similar functionality by performing graph ter, respectively. A number of observations aretior

equivalence testing. discussing:

A set of RDF graphs was created for comparison . Tasks 2 and 3 take roughly the same time, de-
and the time taken to determine equivalence was spite the fact that task 3 handles 48% more
measured. The graphs contain triples that havenehai triples and 14% more molecules.
ing blank nodes, e.9.;1 pl 2 , :2p2 3 « There is a 100% increase in the time taken from
_3p3_4 . For example, Table 1 (a) below shows task 3 to task 4, although task 4 only handles
that Jena takes 0.05 seconds to perform the gigih e 44% more triples.
valence test when the chain depth is 3 and chamisi On the 3-node cluster, tasks 4, 5, 6 and 7 take com
10 (total graph size is 30). Note that DNF staris f  arahle amount of time to complete, although tieee
Did Not Finish” (> 900 seconds). significant increase in the sizes of the tasks.

Table 1. Time measurement of Jena and molecule on
graph equivalence (in seconds).
Jena Depth=3
Chain size =10

Table 2. Time measurements of various MapReduce
tasks on two clusters.

2-node cluster

#triples | # molecules 3-node cluster
363,308 10,387

1,164,446 73,357 899 829

1000

10000 1,727,754 83,744 995 895
. 2,488,024 138,675 1872 1,784
(a) Time measurement for Jena. 2,851,332 149,062 2041 1,789
3,652,470 212,032 2098 1,883
Molecule Depth=3 4,015,778 222,419 2692 1,994
Chain size=10 } ! The above performance characteristics are due to
100 X A . .
1000 m g n . the nature of the MapReduce framework, in which the
10000 : mapandreducephases execute in sequencereuuce
(b) Time measurement for RDF molecules. task can start unless aflaptasks have been finished.

The RDF molecule approach is faster as the numberTherefore, a very large single input file in the pna
of chains reaches 100. The RDF molecule implementa-phase in tasks 4, 5, 6 and 7 dominated their rgnnin
tion gives consistently superior performance ashbot time. Preprocessing of input files to break thero in
the number of chains and chain depth increase. Whersmaller chunks can help to bring down the time riake
chain depth is at least 10 and number of chairet is by themapphase. Figure 6 gives a more intuitive view



of the running time of the different tasks. Horitain
axis represents the number of triples (in 1,000) the
vertical axis represents time (in seconds).
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Figure 6. Time measuremenbf MapReduce conversior

tasks.

As shown in Figure 6, with the increase of date siz
the 3-node cluster shows greater scalability. When
triple number exceeds 2 million, the 3-node cluster
exhibits constant rate of slowdown whereas the deno
cluster slowdowns considerably when processing 4
million triples. It shows that small clusters dot take
full advantage of the MapReduce framework as per-
formance suffer from communication overhead and
node balancing. We expect that a larger clustel wil
amortize these overheads and be much more scalable.

The distributed RDF molecule store takes up around
0.5 GB disk space per million triples. This is doghe
fact that more indexing information is maintainex f
RDF molecules and no compression or other space
saving optimizations have been applied at this .time
Previous modeling [16] has shown the response dime
Nutch is essentially constant as the number ofessrv
reaches 2000 nodes with up to 40 GB of data pee.nod
We expect that our implementation of the on-disk; d
tributed RDF molecule store will conservatively aka
160 billion triples with a similar setup. Improving-
dexing efficiency will easily boost its capacity.

5.3. SPARQL Query Responses

As mentioned in Section 4.2, our SPARQL query

almost the same for the two stores. As the cluster
comes larger, we can expect much better performance
relative to traditional RDF triple stores.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX biopax: <http://www.biopax.org/release/biopax-level2.owl#>
PREFIX biomanta:
<http://biomanta.sourceforge.net/2007/07/biomanta_extension_02.owl#>
PREFIX nchi: <http://biomanta.sourceforge.net/2007/10/ncbi_taxo.owl#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
SELECT ?name ?id
WHERE {

?x rdf:type biopax:physicalEntity .

?x biomanta:fromNCBISpecies ncbi:ncbi_taxo_4932_ind .

?x biomanta:hasPrimaryRef ?y .

?y biopax:DB ?db .

FILTER (str(?db) = "uniprotkb"A"xsd:string)

?y biopax:ID ?id .

FILTER (str(?id) = "013516"Axsd:string)

?x biomanta:hasFullName ?name .

}

6. Conclusions

Efficient querying and inferencing across large-
scale integrated datasets drawn from many souscas i
challenge facing many communities. Semantic Web
technologies such as RDF, OWL and SPARQL are
ideal candidates for the task of data integrat®mhay
offer open, unambiguous and extensible solutions. D
tributed processing paradigms such as MapReduce
have demonstrated economic and practical ways to
process massive amounts (petabytes) of data. The
combination of MapReduce and Semantic Web tech-

nologies appears to offer a perfect solution topttod-
lem of large-scale heterogeneous data integragjoe;
rying and reasoning.

The co-identification problem introduces additional
complications. RDF blank nodes provide a novel way
of referring to equivalent entities without cregtinew
names. However, they introduce complications when
attempting to distribute RDF graphs across a MapRe-
duce architecture.

RDF graphs provide too coarse a granularity for ef-
fective processing, as the context of an entirglyia
needed to disambiguate RDF blank nodes. A finer gra
nularity is required to support the distributedemnia-

engine has been developed by adapting the indexindgion and processing of RDF data. RDF molecules pro-

structure of our RDF molecule store so that itame
patible with the indexing structure of the JRDplei

vide a finer grained solution to the semantic irdéign
and distribution/decomposition problem and enables

store. Hence, comparable query performance andMapReduce processing. We developed optimized algo-
memory usage is expected. We ran the same SPARQLrithms to losslessly decompose an RDF graph irstet a

query (see below) over the RDF molecule store had t
JRDF triple store using an RDF graph describingtea
PPIs obtained and translated from the IntAct datase
The RDF graph contains 79,360 triples. The
SPARQL query finds all instances of the class “phys
calEntity”, with an NCBI taxonomy ID 4932 and a
UniProt ID “013516". The query time (~18 seconds) i

of smaller “molecules” and subsequently merge them.
This process revealed that the presence of RDFblan
nodes can cause problems of data loss, integrity, lo
ambiguity and slow performance. Consequently, we
extended the definition of RDF molecules to include
hierarchy and ordering. Hierarchy and ordering mev
structural information, efficient processing andtada



integrity checking and most importantly makes ispo  [12]
ible to disambiguate blank nodes within a singldano
cule.

Critical algorithms for decomposing an RDF graph [13]
and merging RDF molecules have also been described;
implemented and evaluated. We compared RDF graph
decomposition and merging with Jena’s graph equiva-
lence checking algorithm and obtained promising re-
sults. We also ran SPARQL queries over the RDF mo-[14]
lecule store and observed comparable performance to
the JRDF triple store for moderate numbers of RDF
triples. As greater numbers of triples are loadd i
the scale-out RDF molecule store and as the sitieeof
computational cluster grows, we can expect the per-
formance to increase relative to traditional RDiplér
stores.

[15]
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