
Scalable Semantics – the Silver Lining of Cloud Computing 
 
 

Andre Newman, Yuan-Fang Li and Jane Hunter 
 

School of ITEE, The University of Queensland 
4072 Queensland, Australia 

{anewman,liyf,jane}@itee.uq.edu.au 
 
 

 
Abstract 

 
Semantic inferencing and querying across large-

scale RDF triple stores is notoriously slow. Our objec-
tive is to expedite this process by employing Google’s 
MapReduce framework to implement scale-out distri-
buted querying and reasoning. This approach requires 
RDF graphs to be decomposed into smaller units that 
are distributed across computational nodes. RDF Mo-
lecules appear to offer an ideal approach – providing 
an intermediate level of granularity between RDF 
graphs and triples. However, the original RDF mole-
cule definition has inherent limitations that will ad-
versely affect performance. In this paper, we propose a 
number of extensions to RDF molecules (hierarchy and 
ordering) to overcome these limitations. We then 
present some implementation details for our MapRe-
duce-based RDF molecule store. Finally we evaluate 
the benefits of our approach in the context of the Bio-
MANTA project – an application that requires integra-
tion and querying across large-scale protein-protein 
interaction datasets.  
 
1. Introduction 
 

Semantic Web technologies such as RDF, OWL and 
SPARQL offer significant potential as technologies 
designed to support the integration of and reasoning 
across heterogeneous, disparate data sources. The 
widespread adoption of these technologies is being 
driven by the need to answer complex queries that de-
mand the integration and processing of multiple re-
lated, but disparate, multidisciplinary datasets. Datasets 
from disciplines including environmental sciences, 
biological sciences, social sciences, life sciences and 
health care sciences have been employing these tech-
nologies to facilitate data correlation, integration and 
reasoning.  

However, despite the widespread adoption of RDF, 
OWL and SPARQL within many disciplines and ap-
plications, there remain two major challenges to the 
seamless integration of large-scale distributed datasets: 

1. Efficient scalable RDF querying and reason-
ing; 

2. Object co-identification or co-reference – 
identifying when entries across datasets are 
the same. 

These issues are particularly problematic within the 
life sciences domain that typically involves multiple, 
large-scale datasets generated by independent organi-
zations and communities. The W3C’s Semantic Web 
Health Care and Life Sciences Interest Group 
(HCLSIG)1recently identified co-identification and 
poor reasoning performance as two of the greatest 
challenges to the adoption of Semantic Web technolo-
gies in the life sciences [21]. 

 
1.1. Distributed, Real-time Processing of 

Large-scale RDF Data 
Large-scale data integration places high demands on 

processing, storage and querying. Distributed process-
ing in a clustered environment offers a low cost, high 
performance approach to processing  massive amounts 
of RDF instance data (billions or trillions of triples). 

Cloud computing, in particular Google’s Map-
Reduce architecture [7],provides mechanisms to sup-
port distributed processing over extremely large data-
sets using a cluster of commodity-grade hardware. Da-
ta is broken into smaller units and each compute node 
processes its local copy of data. These results are then 
combined to obtain the complete answer. MapReduce 
has been successfully deployed within Google on a 
number of large-scale tasks including the indexing of 
web pages and has been shown to be a highly reliable, 
scalable and economical architecture. Our aim is to 

                                                 
1 http://www.w3.org/2001/sw/hcls/ 



investigate methods by which Map-Reduce could be 
used to expedite querying and reasoning over large-
scale RDF triple stores. 

Hadoop2 is an open-source software platform that 
implements the MapReduce architecture. It is used by 
Yahoo!, IBM, Facebook and Amazon and can be used 
on Amazon’s Elastic Compute Cloud (EC2)3. We pro-
pose a Hadoop-based, distributed RDF molecule store 
that: 

• Breaks an RDF graph into smaller units that can 
be distributed and indexed across nodes in a 
cluster;  

• Queries each node in the cluster using SPARQL 
as the query language; 

• Merges the query results from each node to 
generate the search results. 

RDF molecules [8] enable lossless decomposition 
and merging of RDF graphs, while maintaining RDF 
semantics, suitable for distributed processing in a Ma-
pReduce architecture. They provide “the finest compo-
nents in which an RDF graph can be decomposed 
without loss of information” [8]. Hence RDF mole-
cules: 

• Provide a method to enable distribution of RDF 
graphs across compute nodes; 

• Enable query results to be aggregated from 
many nodes; 

• Provide a minimal dataset to synchronize graph 
modifications; 

• Provide a way to differentiate blank nodes 
based on their “context”. 

In the original definition of RDF molecules, an RDF 
graph is decomposed into a set of molecules each con-
sisting of a set of triples. However this original design 
lacks (a) the ability to disambiguate a triple with two 
blank nodes (subject and object); (b) representation of 
the structure of triples from the original graph; and (c) 
the ability to leverage certain efficiencies that are 
available. 

We propose extending the original RDF molecule 
definition by adding hierarchy and ordering to mitigate 
the above drawbacks. By having hierarchical, nested 
molecules, triples with two blank nodes can be diffe-
rentiated according to their “context” in the enclosing 
molecule. Moreover, the merging of molecules can be 
made more efficient by imposing a lexicographical and 
“groundedness” ordering over triples. 

 
1.1. The Co-Identification Problem and 

Blank Nodes 
 

                                                 
2 http://hadoop.apache.org/ 
3 http://aws.amazon.com/ec2 

One of the key challenges for the Semantic Web is 
the object co-identification [10]problem. Data integra-
tion is made more complicated because different data 
sources often use different naming conventions for the 
same object. A mechanism is needed to identify two 
equivalent objects and to map between their identifiers. 
Within the Life Sciences domain, this problem is wide-
ly recognized and not easily resolved. The difficulty is 
that key, large-scale protein databases such as UniProt, 
DIP [23], IntAct [14] and MPact [11] each employ 
different naming conventions – both for proteins and 
their various attributes. A single protein may be anno-
tated with a variety of properties including different 
accession IDs, labels, its genomic sequence, the host 
organism, publication information, etc. A protein may 
participate in interactions with another protein in ob-
served experiments, and be documented in a variety of 
databases. The harmonization of such databases and 
their respective ontologies is a significant research 
challenge for the Semantic Web community and has 
been the focus of a number of research projects [5, 24, 
25]. In particular, previous attempts to standardize 
naming and identification (e.g., LSIDs [22]) have had 
limited beneficial impact [9]. We believe that inventing 
another naming convention or trying to reach a consen-
sus will not solve the identification problem[12]. We 
reject the idea of creating yet another URI to create a 
co-reference bundle [13], instead we propose an iden-
tity reconciliation process for the “life sciences identi-
fier problem” based on RDF blank nodes. 

Our approach uses RDF blank nodes to represent 
real-world entities. A blank node is used to represent a 
specific protein; and the properties of this protein, in-
cluding various identifiers from different databases, are 
modeled as triples with this blank node as the subject. 
Although RDF blank nodes have previously been 
demonstrated to provide a useful approach to the object 
co-identification problem [4], they also introduce a 
number of associated problems that arise during RDF 
graph decomposition and merging. The most signifi-
cant problem is that RDF blank nodes are only unique-
ly identifiable within their enclosing graph - they are 
not globally addressable. The implication is that break-
ing down an RDF graph that contains blank nodes will 
incur loss of information. Overcoming this problem 
will require a number of extensions to RDF molecules 
that are described in detail in Section 3. 

 
1.3. The BioMANTA project 

 
BioMANTA is a collaborative project between 

Pfizer Research and the University of Queensland that 
is applying Semantic Web technologies to the model-
ing of biological pathways and protein-protein interac-



tion data. It aims to enable in silico drug discovery and 
development by identifying candidate therapeutic tar-
gets through the analysis of integrated datasets that 
relate molecular interactions and biochemical pathways 
to physiological effects such as toxicology and gene-
disease associations. As such, BioMANTA is integrat-
ing data from protein datasets such as MPact, DIP, 
IntAct and MINT [3] via a common model/ontology, 
the BioMANTA OWL-DL ontology[6, 19]. Conform-
ing to the BioMANTA ontology, protein datasets are 
converted to RDF instances and stored in a distributed 
RDF triple store where they are available for subse-
quent analysis and querying.  

Figure 1 below shows RDF triples about a yeast 
protein with UniProt ID “Q12522”, together with other 
information such as host species, genomic sequence, 
external references, etc., that are compliant with our 
BioMANTA ontology.  

 
Figure 1. RDF triples about a yeast protein. 

The molecular biologists, with whom we are colla-
borating, want rapid responses to queries such as 
“Show me all the human kinases expressed in the liver 
that are strongly inhibited by at least two compounds 
and are localized to the nucleus”. Such queries are po-
tentially very slow to execute as they involve many 
joins and may generate an RDF graph that exceeds 
available memory. Consequently, the BioMANTA 
project provides us with an ideal testbed application 
and end-user group for evaluating our Scale-Out RDF 
Molecule Store. 
 
1.4. Objectives 
 

The high-level objectives of the work described in 
this paper are to investigate solutions to the problems 
of: the ability for an RDF molecule store to decom-
pose, merge and process RDF data, co-identification 
and semantic querying. The more specific objectives 
are to investigate and evaluate: (a) methods by which 
the MapReduce scale-out architecture can be used to 
improve the performance of semantic querying and 
inferencing over large-scale RDF triples; (b) the adop-
tion of RDF molecules for decomposing and distribut-
ing of RDF graphs across computational nodes in the 
architecture; (c) the use of blank nodes to resolve the 
co-identification problem; and (d) extensions to RDF 

molecules to overcome problems of ambiguity, data 
loss and inefficiency introduced by blank nodes. 

The remainder of the paper is organized as follows. 
In Section 2 we discuss related work. Section 3 pro-
vides a description of our extensions to RDF molecules 
to support hierarchy and ordering. Section 4 describes 
the system implementation using BioMANTA data and 
describes: (a) graph decomposition into molecules; (b) 
SPARQL querying across molecules; and (c) molecule 
merging to construct new RDF graphs based on que-
ries. In Section 5, we present the initial results of the 
system’s performance of graph decomposition and 
merging, distributed loading and SPARQL querying. 
Finally, we present our conclusions in Section 6. 
 
2. Previous Related Works 
 

Apart from our own previous work [18], there have 
also been a number of similar or related approaches to 
support scalable semantic querying across large RDF 
triple stores. Abadi et al. and Muster [1, 
17]investigated improving RDF query performance 
through the use of column databases that vertically 
partition the data. This approach improves query per-
formance for certain types of data and uses a very simi-
lar indexing approach to our proposal but does not take 
advantage of multiple compute nodes in a cluster.  

Other work has suggested ways to increase the utili-
ty of MapReduce by adding a Merge stage to provide a 
relationally complete scale-out system [28]. A similar, 
but alternative idea is found in Yahoo’s Pig Latin [20]. 
Both of these systems could be used to store and 
process RDF by treating RDF as tuples. The drawback 
with both of these approaches is that they are “batch” 
oriented and not real-time. 

In addition, there has been previous relevant work 
in the area of RDF graph decomposition. Proposals 
such as Named Graphs [2], Concise Bounded Descrip-
tion (CBD) [26] and Minimum Self-contained Graphs 
(MSG) [27] all attempt to decompose a graph into 
smaller units. Figure 2 visualizes their relationship. 
However, they all have their respective disadvantages. 
In comparison, RDF molecules[8]provide the best ap-
proach for our MapReduce RDF store as they ensure 
automated, unambiguous and lossless decomposition 
and an optimal level of granularity. 
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Figure 2. Granularity of RDF constructs including RDF 

Molecules (from [8]). 



3. Extended RDF Molecules 
 

In this section, we describe how we augment RDF 
molecules with hierarchy and ordering to alleviate cer-
tain drawbacks associated with the original molecules 
definition. 

 
3.1. RDF Molecules 
 

Formally, given an RDF graph G and a background 
ontology W, a pair of operators (d, m) is defined for 
decomposition and merging. 

M = d(G,W) 
G’  = m(M,W) 

(1) 

Where, M is the set of molecules as the result of de-
composition of G with regards to W using decomposi-
tion operator d. The merging operator m merges M 
back to an equivalent graph G’, also with respect to the 
background ontology W. The set of molecules M are 
mutually independent in the sense that no blank node is 
shared among them. Hence, they can be individually 
processed and later merged to construct the RDF graph 
G’ losslessly. 

Two types of decomposition were defined: naïve 
decomposition, in which no background ontology is 
consulted; and functional decomposition, in which an 
OWL ontology is queried for functional dependency 
between nodes.  

The following graph and diagram in Figure 3 con-
sists of 6 triples (in N3 format) that model a physical 
interaction between two proteins (:_3 and _:4 ), 
represented as blank nodes. 

 
 
 
 

 
Figure 3. A simple RDF graph modeling a Protein-

Protein Interaction (PPI). 
The naïve decomposition results in a single mole-

cule consisting of all the above triples since they are 
connected by blank nodes. This process maintains ex-
isting RDF semantics such as reification, containers, 
collections and blank nodes as existential variables. 
The later is demonstrated in Section 5 where molecule 

merging is demonstrated as a way to maintain lean 
versions of RDF graphs. 

3.2. Extensions to RDF Molecules 

RDF molecules have a number of inherent limita-
tions that need to be overcome for efficient merging 
and decomposition. As the top figure of Figure 3 
shows the absence of hierarchy in the original RDF 
molecule definition makes it difficult or even impossi-
ble to distinguish triples {_:2 participant _:3}  
and {_:2 participant _:4} . Moreover, the ab-
sence of ordering prevents certain important perfor-
mance benefits including rapid retrieval of triples. In 
the following subsections, we present our extensions of 
RDF molecules that mitigate these problems. 

3.2.1. Hierarchies of Molecules. Extended with 
hierarchies, a molecule consists of the following 
components: (a) a head triple, which is the 
lexicographically largest and most grounded triple, as 
defined in Section 3.2.2, from the set of root triples; 
(b) root triples, the set of head triples of submolecules; 
and (c) a number of submolecules (optional), where 
each of the submolecules has a head triple in turn. 
 
3.2.2. Ordering of Molecules. The ordering of 
molecules is determined by comparison of their head 
triples. The ordering of two triples is based on the 
comparison of their nodes in turn. If subject nodes are 
equal, predicate nodes are compared. If predicate nodes 
are equal as well, object nodes are finally compared. 

For two nodes, the lexicographical ordering is de-
termined by the following rules, 

• Node type - Blank node < URI reference node < 
Literal node  

• Node value - String comparison of node values 
(“a”< “b”< “c”…) 

The comparison of two molecules is based on the 
comparison of their head triples. For molecules mole-
cule1 and molecule2and their head triples t1 and t2, mo-
lecule1 �molecule2 iff t1�t2, where the symbol 
�represents<, = or>.  Molecule comparison can be 
extended to include comparing root triples and submo-
lecules – this is used during graph merging and mole-
cule subsumption. 

Example. Based on the extended molecule defini-
tion, the graph in Figure 3 is decomposed into the mo-
lecule shown in Figure 4. Note that this molecule has 
three hierarchies and the second root triple contains 
two submolecules. The blank nodes (_:3 and _:4 ) in 
these two submolecules are distinguishable because of 
the hierarchies. 

{_:1 type ExperimentalObservation} 
{_:1 observedInteraction _:2} 
{_:2 participant _:3} 
{_:3 hasUniprotID ‘p32379’} 
{_:2 participant _:4} 
{_:4 hasUniprotID ‘p46949’}  



{ _:1 type ExperimentalObservation } 
{ _:1 observedInteraction _:2 } 

{ _:2 participant _:3 }  
{ _:3 hasUniprotID ‘p32379’ } 

{ _:2 participant _:4 }  
{ _:4 hasUniprotID ‘p46949’’ } 

Figure 4. RDF molecule decomposition of graph shown 
in Figure 3. 

 
4. Implementation Details 
 

In this section, we describe the actual testbed sys-
tem (Section 4.1) and the system components that we 
have implemented, including graph decomposition, 
RDF molecule merging and SPARQL querying across 
RDF molecules. 
 
4.1. The BioMANTA Testbed 
 

For the purpose of the BioMANTA project, we in-
itially selected datasets from DIP, IntAct, MINT and 
MPact. In our previous work [19], we developed an 
integration process to (a) represent the datasets as RDF 
instances compliant with the BioMANTA ontology 
and (b) integrate the PPI RDF instances to form new 
RDF graphs based on UniProt IDs and genomic se-
quences of proteins, which are represented as RDF 
blank nodes. The integrated RDF graphs were subse-
quently decomposed into molecules, distributed across 
the molecule store and queried. 

In protein-protein interaction (PPI) networks, a pro-
tein has a number of identifiers, external references, a 
genomic sequence string, and a host organism. The 
protein may also participate in interactions with other 
proteins. As discussed in Section 2, blank nodes are 
used to represent proteins, interactions, external refer-
ences, etc. Hence, each protein and all of its associated 
information will belong to a single molecule, as shown 
in Figure 5, which illustrates the corresponding RDF 
molecule of the triples in Figure 1. It shows the lexico-
graphical and “groundedness” ordering of the triples 
and differentiates_:Xref1  and _:Xref2  based on 
hierarchy. 

_:Protein FullName “Eukaryotic …” 
_:Protein Sequence “MATR…” 
_:Protein ShortName “eLF-6 ” 
_:Protein Synonym “CDC95” 
_:Protein CrossReference _:Xref1 
     _:Xref1 Accession “Q12522” 
     _:Xref1 Database “UniProt ” 
_:Protein CrossReference _:Xref2 
     _:Xref1 Accession “YPR016C” 
     _:Xref1 Database “MIPS” 

Figure 5. The RDF molecule corresponding to a sim-
plified yeast protein shown in Figure 1. 

Our molecular biologist collaborators identified a 
set of queries that may reveal previously unrecognized 
protein-protein interactions. For instance, the query 
“Find all yeast protein-protein interactions that are 
known to be localized to the endosomal system” helps 

biologists to filter protein-protein interactions (PPIs) 
integrated across the Gene ontology, the NCBI tax-
onomy and PPI datasets. Given the size of the PPI data 
and associated datasets (well over 1 billion triples), 
only a distributed processing environment is capable of 
integrating and querying on this scale. 

 
4.2. Indexing and Querying 
 

Each node in the cluster contains a local, persistent 
store designed to merge new data and respond to 
SPARQL queries. Our indexing scheme takes each 
permutation of an RDF triple (subject, predicate and 
object) and adds a molecule ID (spom, posm, ospm). 
Two other indices consisting of a molecule ID (m), 
parent molecule ID (i), and triple (imspo and spoim) 
are used to recreate the structure of an RDF molecule. 
A Molecules ID uniquely identifies the set of root 
triples for the molecule with the ID (0 indicates that the 
triple is not part of a molecule). A Parent ID indicates 
the molecule ID of the containing molecule (or 0 if it is 
not a submolecule). This supports efficient addition, 
retrieval and removal of molecules in the molecule 
store. An RDF Molecule API allows molecules to be 
added, removed, and found and an adaptor provides an 
RDF API and SPARQL query functionality. 

We have implemented both an in-memory and an 
on-disk SPARQL query engine with RDF molecules 
based on the open-source JRDF4 project. Graph match-
ing is performed locally and answers are combined to 
provide the final query result. Future development of 
additional index adaptors would allow query engines 
from other RDF triple stores to be reused. 

 
4.3. Graph Decomposition and Molecule 
Merging 
 

In our approach, we adopted the naïve decomposi-
tion algorithm for its simplicity, efficiency and robust-
ness. This algorithm computes connected components 
only through edges that connect two blank nodes. Giv-
en an RDF graph, the naïve decomposition algorithm 
decomposes it into a set of RDF molecules, which do 
not share blank nodes and are therefore mutually inde-
pendent.  

The molecule store merges two molecules if one 
molecule contains all the properties (or more) of 
another molecule. In this way, as more molecules are 
added, redundant molecules are removed (or never 
added) allowing results from multiple nodes from a 
query to be merged. 

                                                 
4 http://jrdf.sourceforge.net/ 



The computational complexity of naïve decomposi-
tion and molecule merging are both O(n).For brevity 
reasons, the detailed analysis is not presented. 

 
5. Evaluation Results 
 

We have implemented both the in-memory local 
version and on-disk Hadoop version of the RDF mole-
cule store. In this section, we provide initial perfor-
mance evaluation results for the critical steps in our 
methodology: RDF graph decomposition, RDF mole-
cule merging and SPARQL querying. 
 
5.1. Graph Decomposition and RDF 
Molecule Merging 

 
The graph decomposition and merging algorithms 

described in the previous section are critical compo-
nents of the distributed RDF molecule store. In this 
subsection, we evaluate the performance of these algo-
rithms by comparing it with Jena [15]. Applied sequen-
tially, the two algorithms can decompose an RDF 
graph into a set of RDF molecules, and then merge 
them back to form an equivalent graph. Jena is, to the 
best of our knowledge, the only RDF triple store that 
provides similar functionality by performing graph 
equivalence testing. 

A set of RDF graphs was created for comparison 
and the time taken to determine equivalence was 
measured. The graphs contain triples that have chain-
ing blank nodes, e.g., _:1 p1 _:2 , _:2 p2 _:3 , 
_:3 p3 _:4 . For example, Table 1 (a) below shows 
that Jena takes 0.05 seconds to perform the graph equi-
valence test when the chain depth is 3 and chain size is 
10 (total graph size is 30). Note that DNF stands for 
“Did Not Finish” (> 900 seconds). 

Table 1. Time measurement of Jena and molecule on 
graph equivalence (in seconds). 

Jena Depth=3 5 10 20 

Chain size =10 0.05 0.07 0.1 0.3 
100 0.2 0.4 1.8 9.2 

1000 13.1 37.7 197.7 DNF 

10000 DNF DNF DNF DNF 

(a) Time measurement for Jena. 
(b)  

Molecule Depth=3 5 10 20 

Chain size=10 0.06 0.09 0.1 0.2 

100 0.2 0.3 0.4 0.7 

1000 0.9 1.3 2.5 5.0 

10000 7.7 13.0 26.4 57.4 

(b) Time measurement for RDF molecules. 
The RDF molecule approach is faster as the number 

of chains reaches 100. The RDF molecule implementa-
tion gives consistently superior performance as both 
the number of chains and chain depth increase. When 
chain depth is at least 10 and number of chains is at 

least 100 (i.e., graph size is at least 1,000), the mole-
cule implementation performs orders of magnitude 
better than Jena, with Jena not being able to determine 
equivalence for graph sizes over 20,000. Also note that 
with the increase of chain size and depth the perfor-
mance of molecule implementation exhibits linear de-
gradation, which is in line with our complexity analy-
sis of the algorithms. 

 
5.2. MapReduce Performance 
 

MapReduce tasks are used to populate the distri-
buted RDF molecule store. The map task converts data 
files from PSI-MI format to individual RDF molecule 
graphs. The reduce task collects generated molecules 
and puts them in the persistent, distributed molecule 
store. A series of tests were performed to evaluate the 
loading time of the distributed molecule store on both a 
2-node and a 3-node cluster (individual nodes have 
identical setup).  

The MapReduce tasks were run multiple times us-
ing 10 input files (a total of 4,015,778 triples and 
222,419 molecules). Table 2 summarizes the dataset 
sizes and performance of the various tasks on the two 
clusters. Note that the last two columns represent the 
time taken (in seconds) on the 2-node and 3-node clus-
ter, respectively. A number of observations are worth 
discussing:  

• Tasks 2 and 3 take roughly the same time, de-
spite the fact that task 3 handles 48% more 
triples and 14% more molecules.  

• There is a 100% increase in the time taken from 
task 3 to task 4, although task 4 only handles 
44% more triples. 

On the 3-node cluster, tasks 4, 5, 6 and 7 take com-
parable amount of time to complete, although there is a 
significant increase in the sizes of the tasks. 

Table 2. Time measurements of various MapReduce 
tasks on two clusters. 

Task no. # triples # molecules 2-node cluster 3-node cluster 

1 363,308 10,387 201 165 
2 1,164,446 73,357 899 829 

3 1,727,754 83,744 995 895 

4 2,488,024 138,675 1872 1,784 

5 2,851,332 149,062 2041 1,789 

6 3,652,470 212,032 2098 1,883 

7 4,015,778 222,419 2692 1,994 

The above performance characteristics are due to 
the nature of the MapReduce framework, in which the 
map and reduce phases execute in sequence: no reduce 
task can start unless all map tasks have been finished. 
Therefore, a very large single input file in the map 
phase in tasks 4, 5, 6 and 7 dominated their running 
time. Preprocessing of input files to break them into 
smaller chunks can help to bring down the time taken 
by the map phase. Figure 6 gives a more intuitive view 



of the running time of the different tasks. Horizontal 
axis represents the number of triples (in 1,000) and the 
vertical axis represents time (in seconds).  

As shown in Figure 6, with the increase of data size, 
the 3-node cluster shows greater scalability. When 
triple number exceeds 2 million, the 3-node cluster 
exhibits constant rate of slowdown whereas the 2-node 
cluster slowdowns considerably when processing 4 
million triples. It shows that small clusters do not take 
full advantage of the MapReduce framework as per-
formance suffer from communication overhead and 
node balancing. We expect that a larger cluster will 
amortize these overheads and be much more scalable. 

The distributed RDF molecule store takes up around 
0.5 GB disk space per million triples. This is due to the 
fact that more indexing information is maintained for 
RDF molecules and no compression or other space-
saving optimizations have been applied at this time. 
Previous modeling [16] has shown the response time of 
Nutch is essentially constant as the number of servers 
reaches 2000 nodes with up to 40 GB of data per node. 
We expect that our implementation of the on-disk, dis-
tributed RDF molecule store will conservatively reach 
160 billion triples with a similar setup. Improving in-
dexing efficiency will easily boost its capacity.  
 
5.3. SPARQL Query Responses 
 

As mentioned in Section 4.2, our SPARQL query 
engine has been developed by adapting the indexing 
structure of our RDF molecule store so that it is com-
patible with the indexing structure of the JRDF triple 
store. Hence, comparable query performance and 
memory usage is expected. We ran the same SPARQL 
query (see below) over the RDF molecule store and the 
JRDF triple store using an RDF graph describing yeast 
PPIs obtained and translated from the IntAct dataset. 

The RDF graph contains 79,360 triples. The 
SPARQL query finds all instances of the class “physi-
calEntity”, with an NCBI taxonomy ID 4932 and a 
UniProt ID “o13516”. The query time (~18 seconds) is 

almost the same for the two stores. As the cluster be-
comes larger, we can expect much better performance 
relative to traditional RDF triple stores. 

 
6. Conclusions 
 

Efficient querying and inferencing across large-
scale integrated datasets drawn from many sources is a 
challenge facing many communities. Semantic Web 
technologies such as RDF, OWL and SPARQL are 
ideal candidates for the task of data integration as they 
offer open, unambiguous and extensible solutions. Dis-
tributed processing paradigms such as MapReduce 
have demonstrated economic and practical ways to 
process massive amounts (petabytes) of data. The 
combination of MapReduce and Semantic Web tech-
nologies appears to offer a perfect solution to the prob-
lem of large-scale heterogeneous data integration, que-
rying and reasoning. 

The co-identification problem introduces additional 
complications. RDF blank nodes provide a novel way 
of referring to equivalent entities without creating new 
names. However, they introduce complications when 
attempting to distribute RDF graphs across a MapRe-
duce architecture. 

RDF graphs provide too coarse a granularity for ef-
fective processing, as the context of an entire graph is 
needed to disambiguate RDF blank nodes. A finer gra-
nularity is required to support the distributed integra-
tion and processing of RDF data. RDF molecules pro-
vide a finer grained solution to the semantic integration 
and distribution/decomposition problem and enables 
MapReduce processing. We developed optimized algo-
rithms to losslessly decompose an RDF graph into a set 
of smaller “molecules” and subsequently merge them. 
This process revealed that the presence of RDF blank 
nodes can cause problems of data loss, integrity loss, 
ambiguity and slow performance. Consequently, we 
extended the definition of RDF molecules to include 
hierarchy and ordering. Hierarchy and ordering provide 
structural information, efficient processing and data 

PREFIX rdf:    <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX biopax:   <http://www.biopax.org/release/biopax-level2.owl#> 

PREFIX biomanta: 

<http://biomanta.sourceforge.net/2007/07/biomanta_extension_02.owl#> 

PREFIX ncbi: <http://biomanta.sourceforge.net/2007/10/ncbi_taxo.owl#> 

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

SELECT ?name ?id 

WHERE { 

  ?x  rdf:type biopax:physicalEntity . 

  ?x  biomanta:fromNCBISpecies ncbi:ncbi_taxo_4932_ind . 

  ?x  biomanta:hasPrimaryRef ?y . 

  ?y  biopax:DB ?db . 

  FILTER (str(?db) = "uniprotkb"^^xsd:string) 

  ?y  biopax:ID ?id . 

  FILTER (str(?id) = "o13516"^^xsd:string) 

  ?x  biomanta:hasFullName ?name . 

} 

Figure 6. Time measurement of MapReduce conversion 
tasks. 
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integrity checking and most importantly makes it poss-
ible to disambiguate blank nodes within a single mole-
cule. 

Critical algorithms for decomposing an RDF graph 
and merging RDF molecules have also been described, 
implemented and evaluated. We compared RDF graph 
decomposition and merging with Jena’s graph equiva-
lence checking algorithm and obtained promising re-
sults. We also ran SPARQL queries over the RDF mo-
lecule store and observed comparable performance to 
the JRDF triple store for moderate numbers of RDF 
triples. As greater numbers of triples are loaded into 
the scale-out RDF molecule store and as the size of the 
computational cluster grows, we can expect the per-
formance to increase relative to traditional RDF triple 
stores. 
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