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ABSTRACT  
The computational analysis of protein-protein interaction and 
biomolecular pathway data paves the way to efficient in silico 
drug discovery and therapeutic target identification. However, 
relevant data sources are currently distributed across a wide range 
of disparate, large-scale, publicly-available databases and reposi-
tories and are described using a wide range of taxonomies and 
ontologies. Sophisticated integration, manipulation, processing 
and analysis of these datasets are required in order to reveal pre-
viously undiscovered interactions and pathways that will lead to 
the discovery of new drugs. The BioMANTA project focuses on 
utilizing Semantic Web technologies together with a scale-out 
architecture to tackle the above challenges and to provide efficient 
analysis, querying, and reasoning about protein-protein interaction 
data. This paper describes the initial results of the BioMANTA 
project. The fully-developed system will allow knowledge repre-
sentation and processing that are not currently available in typical 
scale-out or Semantic Web databases. We present the design of 
the architecture, basic ontology and some implementation details 
that aim to provide efficient, scalable RDF storage and inferenc-
ing. The results of initial performance evaluation are also pro-
vided. 

Categories and Subject Descriptors 
I.2.4 [Knowledge Representation Formalisms and Method]: 
Representation Languages; J.3 [Life and Medical Sciences]: 
Biology and genetics 

General Terms 
Design, Experimentation, Standardization 

Keywords 
Semantic Web, protein-protein interaction, scale-out architecture, 
RDF molecules, integration 

1. INTRODUCTION 
BioMANTA is a collaborative project that aims to enable in silico 

drug discovery and development by identifying candidate thera-
peutic targets through the analysis of integrated datasets that relate 
molecular interactions and biochemical pathways with physio-
logical effects such as compound toxicology and gene-disease 
associations. This requires intensive real-time analysis and feed-
back, across large disparate datasets in order to interactively ex-
plore the data space and identify lead candidates or new interac-
tion networks. 
Current protein-protein interaction data is distributed across a 
wide range of disparate, large-scale, publicly-available databases 
and repositories. The integration of the data in these datasets is 
required before researchers can perform complex querying and 
analyses over the data to reveal previously undetected pathways. 
Given the different naming conventions [16], different syntactic 
and semantic representations and descriptions and the massive 
scale of the datasets, precise and efficient integration is a very 
challenging problem. Current tools available for bioinformatics 
data integration and discovery vary widely in terms of quality, 
maintenance and applicability. There is a proliferation of many 
different tools for performing operations on many different kinds 
of data [29], but there is also a general lack of standards for repre-
senting data, and a slow uptake of existing data standards [16]. 
Consequently, the BioMANTA project is aiming to deliver a more 
standardised approach to the integration of PPI data, through a set 
of open source interoperable tools and datasets that can be re-used 
and applied to bioinformatics generally. 

1.1 The Architecture 
Existing RDF databases have typically suffered from limited scal-
ability and poor or inefficient inferencing and querying1. While 
some stores offer a high level of scalability for a single node, 
there is little support for aggregation across multiple nodes. Infer-
encing is typically limited to either basic operations across large 
amounts of data or richer inferencing over small amounts of data 
– we require rich, complex inferencing over large amounts of 
data2.  There are many problems associated with scientific data 
analysis including: algorithm intensity, nonlinearity and limita-
tions on computer component bandwidth [17]. These issues pre-

                                                                    
1 http://esw.w3.org/topic/TripleStoreScalability 
2 http://esw.w3.org/topic/LargeTripleStores 
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vent interactive analysis over derived datasets. In order to over-
come these difficulties, Gray recommended a number of mecha-
nisms to expedite and improve scientific data analysis [17]: 
• The use of standardised and precise metadata to describe the 

units, names, accuracy, provenance, capture details, etc., in 
order to help tools compare and process the data correctly; 

• The creation and adoption of common terminologies using 
Semantic Web technologies (RDF and OWL); 

• The use of set-oriented processing methods, such as Google’s 
MapReduce [11]. 

So while the use of ontologies and other Semantic Web technolo-
gies such as RDF can provide the ability to integrate, reason and 
process over datasets, the magnitude of the processing required 
and the size of the datasets have prevented a speedy, efficient end-
to-end solution. 
In order to process data quickly, a parallel architecture-based 
technique known as MapReduce [11] is becoming increasingly 
popular. This data processing technique provides a common way 
to solve general processing problems and is closely aligned with 
the way data is acquired from experiments or simulations [17]. In 
a MapReduce system, a map function takes input key/value pairs 
and transforms them to output key/value pairs. The reduce func-
tion takes the values in each unique key and produces output val-
ues. MapReduce libraries are found in the majority of the most 
popular languages including Java, Javascript, C++, Perl, C#, Py-
thon, Ruby, and Scala. The advantages of this architecture are 
numerous [11, 45] and include: 
• A programming model that is abstract, simple, highly parallel, 

powerful, easy to maintain, and easy to learn; 
• An ability to efficiently leverage low-end commodity hard-

ware; 
• Easy deployment across hundreds to thousands of nodes on 

internal or external hosting services; and 
• Robustness and ability to recover from data corruption or the 

loss of individual nodes. 
Our hypothesis is that Semantic Web applications can benefit 
from the adoption of a scale-out architecture together with 
MapReduce data processing, in order to speed up querying, infer-
encing and processing over large RDF triple stores of scientific 
and biomedical data. 

1.2 Data and Ontologies 
The primary aim of the BioMANTA project is to integrate data 
from protein datasets such as MPact [19], DIP [39], IntAct [26] 
and MINT [9] using a common model for proteins and protein-
protein interaction data to enable data harmonisation. The com-
mon model is represented as a BioMANTA OWL-DL ontology3 
that we have developed. This ontology was developed by reusing 
vocabularies from well-established ontologies such as Gene On-
tology [1], Cell Type ontology [2], BioPAX [4], PSI-MI [21],  and 
others such as NCBI taxonomy.  Based on the BioMANTA ontol-
ogy, protein datasets are converted to RDF instances and stored in 
a distributed RDF triple store where they are available for subse-
quent analysis and querying.  
The heterogeneity of naming conventions across the disparate 
datasets is a major problem. In addition, each dataset has its own 
method for protein identification. There have been previous at-
tempts at naming standardization but they have had limited effect 
[16]. We believe that inventing another naming convention or 
trying to reach a consensus will not solve the identification prob-

                                                                    
3 http://biomanta.sourceforge.net/2007/07/biomanta_extension_02.owl 

lem. Instead, we have developed an identity reconciliation process.  
Firstly, RDF blank nodes are used to represent the “real” proteins 
and provide the hub that links to the relevant entries in different 
(translated) datasets to create a single representation encompass-
ing all information about a particular protein. This approach en-
ables all three levels of “attitudes” of knowledge representation 
(record, statement and domain) [38] pertaining to a particular 
protein, to be incorporated in the RDF document, enabling highly 
sophisticated, multi-level queries to be expressed.  
In a scale-out architecture large RDF documents (graphs) need to 
be sub-divided into smaller ones for distributed processing. Dur-
ing querying, processing results must be merged in order to elimi-
nate duplicate protein representations. This requires the disam-
biguation and identification of blank nodes – which is not a sim-
ple process. As each blank node’s scope exists only within the 
enclosing document, blank nodes are not globally addressable. 
Hence, a consistent way of uniquely referring to them is required. 
The concept of RDF molecules [12] was proposed to tackle the 
problem of addressing blank nodes by decomposing an RDF 
graph losslessly into a set of molecules which distributes updates 
to graphs. In the work described here, we extend the definition of 
RDF molecules to make the storage, retrieval and querying more 
efficient in the distributed environment. 
In the remainder of this paper we describe the novel approach to 
semantic integration of biomolecular data that we have imple-
mented and evaluated. This approach combines the scalability and 
performance of a scale-out architecture, with the simple and effi-
cient MapReduce programming model and Semantic Web tech-
nologies to enable interactive querying, inferencing, analysis and 
modelling of disparate protein-protein interaction and pathway 
datasets. In Section 2, we describe related works. Section 3 de-
scribes the proposed application and the high-level architecture of 
the system. In Section 4 we present the ontologies we have devel-
oped, the datasets we have integrated to date and the types of 
queries we are aiming to support. In Section 5 we describe the 
extended RDF molecule approach we have implemented. Section 
6 presents an initial performance evaluation for decomposing 
RDF files and the integration of proteins Section 7 concludes with 
a summary of the outcomes to date and future work plans. 

2. Related Works 
2.1 The Scale-Out Architecture 
For a relatively new architecture, scale-out MapReduce systems 
have already received very promising and positive feedback and 
evaluation results. Benefits include: better price/performance, 
successful application to many different domains, and open source 
implementations. 
Google’s initial work using these MapReduce scale-out tech-
niques has included: indexing the web, statistical analysis of Web 
site usage, general data storage and querying, map and satellite 
imagery processing, and social networking [8]. Similarly, Yahoo 
has been applying the technology for: “search and information 
retrieval, machine learning and data mining, microeconomics, 
community systems and media experience and design” [43]. Other 
successful applications include: indexing and searching web 
documents [27], natural language processing [33], learning algo-
rithms for multicore systems [10] and simulation [28]. 
The Hadoop4 project provides an open source implementation of 
Google’s scale-out MapReduce, system including the Hadoop 
Distribute File System (HDFS), MapReduce and HBase (a Big-
Table clone). 

                                                                    
4 http://hadoop.apache.org/ 



 

 

While there are no known publications that describe the use of 
MapReduce scale-out architectures to store and process RDF, 
there have been initial implementations and research into similar, 
overlapping areas including: RDF stores using “shared nothing” 
clustering, extending MapReduce higher-level operations, and 
column databases for storing and querying RDF. 
The YARS2 federated RDF repository and the SWSE (Semantic 
Web Search Engine) architecture use a “shared nothing” approach 
to achieve scalability [20]. This has some conceptual similarities 
to our data acquisition architecture. However, it is still bound to 
indexing and querying, and does not share the attributes of a 
MapReduce scale-out solution with its ability to perform arbitrary 
processing and indexing schemes. 
The design of BigTable and HBase is similar to column databases 
such as Sybase IQ, LucidDB, Metakit, KDB, C-Store [42] and 
Monet [5]. These databases were specifically designed to get the 
best performance from modern hardware architecture. There is 
also some initial research currently underway investigating the use 
of C-Store  and MonetDB [31] for storing and querying RDF data 
as well as using these databases to handle scientific data [22]. Our 
approach differs from these approaches in a number of ways: 
• We create a generic store for triples of any predicate, rather 

than creating one table per predicate; 
• Our clustered approach differs substantially from their data-

base architecture; 
• We do not support ACID (Atomicity, Consistency, Isolation 

and Durability) database transactions; 
• Column databases do not have a MapReduce-like processing 

framework, and don’t combine processing and data manage-
ment in the same way. 

To the best of our knowledge, the work described in this paper 
represents the first attempt to apply a scale-out distributed com-
puting approach to expedite the querying and processing of data in 
a large scale-out RDF triple store. Although we specifically apply 
it to protein-protein interaction (PPI) data, there are undoubtedly 
many other suitable applications that require the integration and 
processing of large scale distributed datasets (e.g. climatology, 
geosciences, astronomy). 

2.2 RDF Molecules 
The concept of RDF molecules was first proposed in [12] as a 
method that provides the optimum level of granularity between 
RDF graphs and triples. Given an RDF graph G, the set of mole-
cules are the smallest sets of triples into which G can be decom-
posed without loss of information. Figure 1 from [12] shows the 
different granularity levels of various RDF constructs. This illu-
strates that RDF molecules sit between named graphs [23] and 
triples in terms of granularity. 

Figure 1 - Relative Granularity Levels of RDF Constructs. 

Formally, given an RDF graph G and a background ontology W, a 
pair of operators (d, m) is defined for decomposition and merging. 

� � ���, �� 
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Where, M is the set of molecules as the result of decomposition of 
G with regards to W using decomposition operator d.  The merg-
ing operator m merges M back to the same graph G, also with 
respect to the background ontology W. The set of molecules M are 
mutually independent in the sense that no blank node is shared 
among them. Hence, they can be individually processed and later 
merged to construct the RDF graph G losslessly. 

Three types of RDF nodes were defined based on their grounded-
ness. A node is: 
1. Naturally grounded if it is either a URI reference or a literal;  
2. Functionally grounded if it is a blank node and is uniquely 

determined by a functional/inverse functional property and 
another node;  

3. Contextually grounded if it is a blank node and not function-
ally grounded. 

There are also three types of molecules, based on the types of 
nodes they contain: 
1. Terminal molecules contain only grounded nodes and/or 

functionally grounded blank nodes, which are all “closed”.  
2. Non-terminal molecules contain one “open” blank node.  
3. Contextual molecules contain at least one contextually 

grounded blank node.  
Two types of decomposition were defined: naïve decomposition, 
in which no background ontology is consulted; and functional 
decomposition, in which an OWL ontology is queried for func-
tional dependency between nodes. 
A number of extensions to RDF similar to RDF molecules have 
also been proposed in the past. Named graphs [23] are an exten-
sion of RDF that enables the specification of an RDF graph 
through a set of RDF statements. The division of statements into 
sub-graphs is arbitrary. The ontology author is responsible for 
manually constructing the graphs and naming them. Hence no 
automated process is available.  
Concise Bounded Description (CBD) [41] is defined as a sub 
graph of statements about a particular resource. Given a particular 
resource, its CBD contains: 
1. All statements in the source graph in which the subject of the 

statement is the particular resource; 
2. Recursively, for all statements identified in the subgraph thus 

far having a blank node object, all statements in the source 
graph where the subject of the statement is the blank node in 
question and which are not already included in the subgraph. 

3. Recursively, for all statements included in the subgraph thus 
far, for all reifications of each statement in the source graph, 
the CBD beginning from the rdf:Statement node of each reifi-
cation. 

A drawback of CBD is that it only looks at subject nodes in RDF 
triples. Hence, the CBD created for a resource node may not in-
clude all the information. 
Minimum Self-contained Graphs (MSG) [15] is a proposal for 
the decomposition of an RDF graph into self-contained subgraphs. 
Given an RDF statement, its corresponding MSG includes (a) the 
statement itself and recursively, and (b) for all the blank nodes 
involved in the MSG so far, all the statements of MSGs involving 
these blank nodes. Compared to CBD, MSG looks for statements 
to be included in the MSG in both directions. Hence, it results in a 
lossless decomposition. One potential drawback of MSG occurs 
when the graphs contain many blank nodes. In this situation, the 
resulting subgraphs may be very large. 
Based on the above comparison, RDF molecules provide the best 
granularity as they offer automated, unambiguous and lossless 
decomposition, whilst not suffering from the potential scale prob-
lem that MSGs face. 

Universal Graph

RDF Document

Named Graph

Molecule

Triple



 

 

    The REDD algorithm [13] was defined to optimize RDF sto-
rage by reducing redundancy caused by blank nodes. It finds re-
dundant blank nodes by repeatedly identifying “connected sub-
graphs”, constructing and executing queries on these subgraphs. 
The complexity of the REDD algorithm is O(n2), where n is the 
number of triples in the graph.  Creating a chain of triples (a con-
nected subgraph) by navigating predicates was suggested as part 
of the REDD algorithm.  It was also suggested that a triple order-
ing be created so that inclusion of other connected subgraphs or 
supergraphs be determined, apart from simple equality.  These 
concepts are also included in our extension of RDF Molecules. 

3. The BioMANTA Project 
3.1 The Biomolecular Application 
The first step in the BioMANTA project was to identify the rele-
vant available datasets that we wanted to integrate, and to develop 
the common model or ontology that we would use to do so. Can-
didate databases included BIND, DIP, HPRD, KEGG, Reactome, 
Ingenuity and GeneGo. Due to the intrinsic representation of se-
mantic data as a network of triples, protein-protein interaction 
data is highly amenable to representation in Semantic Web form. 
While it might be assumed that an interaction could be repre-
sented simply as a single triple (e.g. a protein-protein interaction: 
<proteinA> <interactsWith> <proteinB>) much more information 
must be included to capture biologically-relevant aspects of inter-
actions. A protein, for example, has a number of attributes that 
must be included in its representation. These include simple at-
tributes that can be used to identify proteins, such as “full name”, 
“short name”, “sequence”, “species” and “gene symbol”, as well 
as any number of “synonyms” and “accession numbers”, which 
may be associated with the protein in various resources. To sup-
port these identifying attributes, a model of a protein would re-
quire a minimum of seven triples. Interactions also require multi-
ple triples for accurate representation. Key concepts in the repre-
sentation of interactions include “participants”, “interaction type”, 
“interaction detection method”, and “references”. Many attributes 
are composed of multiple attributes; for example, a “reference” 
may have an associated “PubMed Identifier” and “abstract”, 
which in turn may have a “PubMed URL”. An example of this 
structure is shown in Figure 2. 

 
A number of public efforts have used RDF and OWL to represent 
many types of biological information, including protein interac-
tion data. The UniProt [44] database was recently migrated into a 
more semantic form. YeastHub [25] also uses Semantic Web 
technologies to organize and integrate biological data sources. 

The Semantic Web Applications in Neuromedicine (SWAN) [14] 
project is utilizing semantic technologies to enable collaborative 
research. The BioPAX initiative is developing a data format for 
use in the modeling of numerous levels of biological pathway 
information. The Reactome project [24] has provided its data in 
the BioPAX Level 2 format [4]. 
We chose to use OWL DL to construct a high-level ontology to 
integrate concepts from relevant biological ontologies and vo-
cabularies. We reviewed ontologies listed by the Open Biomedi-
cal Ontology Foundry (OBO Foundry) [40] and the National Cen-
ter for Biomedical Ontology (NCBO) [35]. Of the approximately 
70 ontologies listed at these sites, around three quarters are writ-
ten using the OBO format, with the remainder using formats in-
cluding OWL, Protégé and plain text. Some of these, such as 
BioPAX and the Protein Standards Initiative Molecular Interac-
tion vocabulary (PSI-MI) [21], provide significant coverage over 
concepts relevant to the domain. Others, such as the Gene Ontol-
ogy (GO), Sequence Ontology and the NCBI-taxonomy only in-
tersect with the field. 
In particular, merged components from two ontologies were used 
to describe molecular interactions in our ontology - the OWL 
ontology BioPAX and the OBO ontology PSI-MI. BioPAX is 
designed to describe pathway rather than specific molecular inter-
action data. However, of the approximately 40 classes and 70 
properties that BioPAX defined, many are key concepts and rela-
tionships necessary to describe molecular interactions. The PSI-
MI vocabulary on the other hand, is specifically designed to de-
scribe molecular interaction data and captures >800 concepts from 
the domain. However, it is represented in OBO and expresses only 
hierarchical relationships between classes. Hence, we adopted and 
merged components from both ontologies during the development 
of the BioMANTA ontology. 
Four protein interaction databases were initially selected for con-
version to RDF. They are MPact, DIP, IntAct, and MINT. These 
resources were selected for several reasons: they are participants 
in the International Molecular Exchange (IMEX) Consortium5, 
which makes data available under the Creative Commons license 
arrangements6; they contain human-curated interaction data which 
is better quality than automatically mined or predicted interaction 
data, and these datasets are available for download in a standard 
data exchange format, the Protein Standards Initiative (PSI) Mo-
lecular Interaction (MI) XML format [21]. PSI-MI provides a 
hierarchical controlled vocabulary for recording information about 
molecular interactions. While this format is suitable for the ex-
change of data between resources, it lacks the ability of descrip-
tion frameworks like RDF and OWL to support Semantic Web 
applications. These databases also contain a very large number of 
proteins and interaction instances. In excess of six million triples 
are required to express the interaction data contained in these 
resources (Table 1). 
A significant saving in triple numbers may be achieved by group-
ing proteins or interactions by some common property that can 
then be represented in the metadata of the document containing 
that set. For example, provenance information such as the source 
database of interactions, version information, data acquisition 
dates and license information can be recorded as document meta-
data, thus removing the necessity to record this information for 
each interaction to which it pertains. Likewise, if proteins are 
grouped according to species, then this attribute is represented in 
the graph metadata for all proteins contained in the graph, remov-
                                                                    
5 http://imex.sourceforge.net/ 
6 http://creativecommons.org/ 
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ing many thousands of triples from the instance data. Even with 
the shift of significant amounts of information into graph meta-
data, a large number of triples are required to represent each inter-
action, regardless of the ontology selected. We have conserva-
tively estimated that each protein requires ten triples, while each 
interaction requires fifteen. While these numbers may seem small, 
when considering the volume of interaction information stored in 
publicly available resources, it becomes obvious that the resulting 
RDF data sets for molecular interactions is in the order of millions 
of triples. This number is fluid, as it depends on the information 
being modelled and the techniques used to express them. 

Table 1 - Estimated IMEX Protein-Protein Data Sizes. 

 

Once this data is represented in RDF, inferencing is used to infer 
additional information that is the logical consequence of the given 
statements. For example, if two proteins are from the same spe-
cies, and have the same protein sequence, but have different 
names, it may be inferred that those names are synonyms. Like-
wise, if an interaction is purported to occur between proteins from 
different species (for example, a human and a hamster) it may be 
inferred that this interaction will never occur in nature, and is thus 
likely to be a false positive interaction. 

3.2 The Architecture 
The BioMANTA system requires the use of both online and batch 
processing. The online processes are performed against existing 
indices, and allow users to quickly query against the pre-
computed datasets. The batch processing of queries supports more 
complicated and potentially non-terminating processes. Figure 3 
shows the general processing that occurs within the BioMANTA 
system. The instance data and ontologies (either pre-processed or 
generated by crawling data sources on the Web using Nutch) are 
converted to RDF that conforms with the BioMANTA ontology. 
Pellet is then used to infer new statements directly related to the 
instances being added. RDF/XML is generated and then read in 
by the cluster into the HBase store. The RDF graph is broken 
down into smaller, sub-graphs and then added. HBase then in-
dexes and stores the data across Hadoop’s Distributed File System. 
The query engine processes the queries and returns the immediate 
results, which may indicate that further processing is required. If 
further processing is required, the user is notified and the addi-
tional data transformation jobs are added to process the data. 
Examples of simple queries include: join and optional (left outer 
join) queries, Lucene text searching including RDF literals, pre-
computed inferred statements, pre-computed network queries such 
as protein to protein interactions, and identifier mapping. Exam-
ples of batched operations include: shortest path queries, ad-hoc 
computing on interaction networks, and probabilistic queries.  For 
the current purposes of determining the quality of the interactions 
integrated, we perform queries such as: the number of interactions 

with specific proteins, interactions that occur with certain types of 
observations, the number of experimental methods and for every 
PubMeD ID how many interactions are recorded. 

 
Figure 3 - BioMANTA Architecture. 

 

4. A Uniform Representation of Biomedical 
Data in OWL 

4.1 The BioMANTA Ontology 
The BioMANTA ontology is an OWL DL ontology that builds on 
existing biological ontologies, such as BioPAX Level 2 [4], Cell 
Type ontology [2] Gene Ontology [1], and NCBI Taxonomy7 , to 
enable the integration of the various facets of knowledge about 
protein-protein interactions. The ontology combines the use of 
top-down and bottom-up development taking terms as appropriate 
in order to leverage existing datasets.  We have reused vocabula-
ries where appropriate such as the Cell Type ontology (a struc-
tured controlled vocabulary8 taken from OBO Foundry that was 
converted to OWL format9). Figure 4 shows the major compo-
nents of the BioMANTA ontology. 
 

  
Figure 4 - Major Components of the BioMANTA ontology. 

 
Our approach to knowledge representation combines two of the 
three levels of attitudes to data modeling: record and statement 
[37].  Our ontology allows us to express: “there exists a protein 
(the record level) by asserting its existence, and database A says it 
has these properties and database B says it has these properties” 

                                                                    
7 http://www.ncbi.nlm.nih.gov/Taxonomy/ 
8 http://obofoundry.org/cgi-bin/detail.cgi?id=cell 
9 http://biomanta.sourceforge.net/2007/07/celltype_instance_edit.owl 
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(the statement level) by recording provenance information. We 
also align the experimental provenance information (statement 
level) to improve query quality – allowing us to filter out various 
experimental types.  This work is based on object identification or 
record linkage [3] which seeks to integrate various data sets across 
databases and the Semantic Web [18]. In our current modeling 
approach we do not capture knowledge on the domain level yet. 
However, domain level modeling may be incorporated at a later 
stage for more complex reasoning. 
    In the ontology, the hierarchical but expressive properties of 
PSI-MI, such as those used to record participants and experimen-
tal methods of interactions, are combined with the extensibility 
and richer relationships available in BioPAX (as it is expressed in 
OWL).  Among others, the ontology includes definitions of the 
following key concepts: 

• Observation types including: Experimental, Predicted and In-
ferred, 

• Provenance information including: data source, the type of 
experiment, the cell type, inferencing method, sub-cellular lo-
cation and observation reference (a BioPAX publication cross 
reference). 

While BioPAX is expressed in OWL there are numerous proble-
matic issues associated with its modeling technique [37] [36] [30].  
One of the most detrimental to our requirements is the lack of 
context or meaning when the openControlledVocabulary  
class is used to include links to external terms. To overcome this, 
we developed a process of taking converted OBO to OWL ontol-
ogies and defining classes and instances to represent these richer 
relationships. 
By mapping and linking to existing component ontologies using 
OWL object properties, the BioMANTA ontology serves as a 
well-structured model for representing RDF instances. These RDF 
instances represent an integrated view of individual proteins and 
all of the information about them. The next subsection provides a 
brief account of the integration process. 

4.2 The Integration Process and Datasets 
Various protein datasets such as DIP, IntAct, MPact, and UniProt 
[44] often contain partially overlapping information about pro-
teins and genes. The integration of the data in these datasets pro-
vides a uniform representation of a significant proportion of the 
available information pertaining to protein-protein interactions, 
allowing for flexible querying on topics such as tissue/organ ex-
pressions, species, genomic sequences, developmental states, etc.  
There are two major challenges that must be overcome to perform 
this integration. Firstly, different datasets often use different nam-
ing conventions; hence, it is difficult but important to be able to 
identify the “same” protein in different datasets. For example, the 
protein identified as “27628” in DIP is the same protein as the one 
identified as “115 dax human” in IntAct.  Both identifiers are 
maintained, to allow querying and retrieval of associated data and 
properties from both databases. Secondly, as datasets sometimes 
contain omissions, duplication, inconsistency and noise, it is not 
advisable to rely on the matching of names as an indication of the 
same protein. Given the above challenges, we decided to use a 
combination of UniProt IDs and genomic sequences to distinguish 
and identify proteins. This helps to ensure the high quality of the 
resultant data. The integration process can be conceptually de-
scribed in the following steps. 
1. PSI-MI to RDF translation -  The XML datasets in PSI-MI 

[21] format are translated to RDF. This involves modeling all 
of the information associated with proteins and interactions us-
ing the RDF constructs, concepts and properties defined in the 

BioMANTA ontology. For example, the organism, the local 
identifiers and the genomic sequence are extracted and asso-
ciated with each protein.  

2. UniProt ID augmentation – Because UniProt is a comprehen-
sive protein database, we decided to use UniProt IDs in the in-
tegration process to merge proteins from different datasets. 
However, not all datasets contain UniProt IDs. In this step, 
with the help of external mapping files [32] between local 
MPact IDs (CYGD IDs)10 and UniProt IDs, a UniProt ID is 
added to each protein instance. 

3. Sequence augmentation – Proteins that have genomic se-
quences can be disambiguated by evaluating the sequence, us-
ing tools such as Blast. Equivalent sequences are then used to 
identify equivalent proteins across data sources. In this step, all 
the missing sequences of proteins are added to the RDF in-
stances from external mapping files for individual datasets.  

4. Protein integration - the final step involves identifying equiv-
alent proteins in different datasets (by matching UniProt IDs 
and sequences) and merging them into a single, uniform repre-
sentation. Proteins with different UniProt IDs are considered to 
be different; those with same UniProt IDs but different se-
quences result in warnings; proteins with matching IDs and se-
quences will be merged into a single protein, together with 
their annotations.   

Instead of creating another naming convention we use blank 
nodes to represent proteins and add properties to them (including 
provenance information). Blank nodes are also used to represent 
interactions, cross references, experimental methods, etc., for the 
benefits of time and cost savings [18]. Figure 2 above depicts such 
a merged protein. The next section details our approach to the 
efficient processing of RDF graphs with blank nodes. 

5. Extended Molecules 
In order to incorporate as many datasets as possible without re-
striction, we decided to allow blank nodes in RDF documents. 
This decision presents a challenge for the distributed processing 
of RDF documents as blank nodes are only addressable locally 
within a document. RDF molecules [12] provide a mechanism for 
decomposing an RDF graph into a set of self-contained molecules, 
each of which contains all (transitively) connected blank nodes. 
This enables an RDF graph to be losslessly decomposed, distri-
buted for processing and subsequently merged, as depicted in 
Figure 5 below. 

 
Figure 5 – An RDF Graph as molecules across multiple nodes 
in a computing cluster. 
 
In order for an RDF molecule store to support efficient storage 
and querying of large-scale RDF documents, it is important that 
basic operations such as decomposition and merging on molecules 
is efficient. Hence we extend the original definition of molecules 
in [12] to include (1) hierarchy and (2) ordering. 
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5.1 Hierarchies 
In the original definition, molecules are flat and each molecule 
contains a set of RDF triples. We believe having hierarchical mo-
lecules helps to better reflect the structure of the underlying RDF 
document. These extensions to molecules accurately reflect a 
structure found in biological and other data and represent relation-
ships found in databases similar to where one relation refers to 
another via a foreign key. 
Another important reason for adding hierarchies is to be able to 
identify equivalent blank nodes based on context instead of on 
internal identifiers. Given the same context we can determine 
blank node equivalence and remove redundant information. 
Figure 6 below shows a simplified observed protein-protein inte-
raction in N3 format. 

{_:1 observedInteraction _:2} 
{_:1 type ExperimentalObservation 
{_:2 participant _:3} 
{_:3 hasUniprotID ‘p32379’} 
{_:2 participant _:4} 
{_:4 hasUniprotID ‘p46949’}  

Figure 6 A Protein-Protein Interaction in RDF. 
The nested structure of the above RDF fragment cannot be 
represented by the original molecules since it will be a set con-
taining all the triples. By allowing molecules to contain sub-
molecules, it is possible to represent the structure.  The above 
graph is decomposed into a molecule as shown in Figure 7. 
The different indentation levels signify different nesting levels or 
submolecules.  The “root triples” of a molecule are the triples in 
the first level of the molecule.  A “head triple” is the first triple, as 
they are ordered, in the set of root triples.  A “linking triple” is a 
triple that has two blank nodes, the second blank node linking to a 
submolecule. 
{ _:1 type ExperimentalObservation } 
{ _:1 observedInteraction _:2 } 

{ _:2 participant _:3 }  

{ _:3 hasUniprotID ‘p32379’ } 

{ _:2 participant _:4 }  

{ _:4 hasUniprotID ‘p46949’’ } 

Figure 7 The Hierarchical Molecule Corresponding to the 
Triples in Figure 6. 

Figure 7 shows a molecule with three levels, two root triples (the 
first two) and the head triple is “_:1 type ExperimentalObserva-
tion”. 

5.2 Ordering 
The other major extension to molecules that we implemented is 
ordering. Maintaining ordering is important for the efficient com-
parison of molecules and triples for graph and molecule merging.  

The ordering is defined over triples given a molecule. The “less 
than” relationship between two triples is based on the comparison 
between their subjects, predicates and objects.  

For two nodes, the ordering is determined by the following rules. 

• Node type:  
− Blank node type, which is less than; 
− URI reference node type, which is less than; 
− Literal node type. 

• Node value 
− Comparison of string value of the nodes 

The ordering of two triples is based on the comparison of their 
nodes in turn. If subject nodes are equal, predicate nodes are com-

pared. If predicate nodes are equal, then the object nodes must be 
compared. 

The comparison of two molecules is based on the head triples they 
have. For molecules molecule1 and molecule2 and their head 
triples t1 and t2, molecule1 

⊕ molecule2 iff t1 
⊕ t2, where the 

symbol ⊕ represents <, = or >. 

5.3 Algorithms 
In this section, we present algorithms for molecule-related opera-
tions such as naïve graph decomposition (no background ontolo-
gy) and molecule merging.  There are a number of advantages 
associated with this approach compared to the functional ap-
proach: 
• Less duplication across molecules – the functional decomposi-

tion will generally result in blank nodes shared across multiple 
molecules whereas naïve decomposition will generate one mo-
lecule containing all such blank nodes. 

• As the decomposition and processing does not need to consult 
an ontology, it is generally faster and is easier to implement. 

As described in [12], the naïve graph decomposition algorithm 
decomposes a graph into a set of molecules. The decomposition of 
a local RDF graph into a set of molecules is described in the 
pseudocode shown below. We rely on the equality of the blank 
node identifiers (a combination of a UUID and a surrogate numer-
ic identifier) when decomposing triples from a local graph. 

There are three cases to consider when identifying sub-molecules: 
• If the head triple is a link triple and the triple to add has a 

subject that is equal to its object then the triple is added to the 
head triple. 

• If the identified sub-molecule contains a triple which links to 
the head of the current molecule then the current molecule is 
added to the sub-molecule and the molecule used from then 
on is the sub-molecule.  In other words, the contents of the 
molecule are added to the sub-molecule which becomes the 
molecule used in future operations. 

• If the identified sub-molecule does not contain a triple which 
links to the current molecule then it is added to the current 
molecule. 

The complexity of the above graph decomposition algorithm can 
be analyzed as follows. Assume that all basic operations such as 

AT is the set of added triples (initially empty).  
LGT is a sorted set in descending order (defined above) of triples from a local 
graph.  
FOR EACH Triple T from LGT not in AT  
        Create a new molecule M adding T.  

        IF T is Grounded THEN  
              Add T to AT.  

        ELSE  
              findEnclosedTriples(M).  
        END IF  

END FOR  

findEnclosedTriples(M)  
        T is the HeadTriple of M.  
        BTS is a set of all triples which contain T's blank nodes.  
        FOR EACH Triple BT from BTS not in AT  
             Create a new molecule SM adding BT.  

             Add BT to AT.  
             findEnclosedTriples(SM)  
             IF BT is a Link Triple THEN  

                  IF BT's object node equals M's subject node THEN  
                        Add M to SM.  
                        SM becomes M.  
                  ELSE  
                        Add SM to M.  

                  END IF  
             ELSE  
                  Add BT to M.  

             END IF  
        END FOR  

        Add all triples found to the set AT.  
END findEnclosedTriples  



 

 

adding one triple to a molecule, comparison between two nodes, 
getting the subject/object node from a triple; testing whether a 
triple is a blank node, and creating a molecule, etc., all take con-
stant time O(1). The complexity of the algorithm depends on the 
number of blank nodes of the graph being decomposed. For ex-
ample, suppose we have a graph G with n triples: 
• The best case is when no triple contains blank nodes. In this 

case, both the subject and object nodes of each triple are 
tested for blank node. The triples are subsequently added to a 
new molecule. Four constant-time operations are performed 
for n triples. Hence, the complexity is linear to the size of the 
graph O(n). 

• The worst case is when all triples share, recursively, some 
blank nodes and they end up in one molecule with n levels 
(one triple at a level). In this case, the molecule is a chain of 
triples. As a triple is only added to a (sub) molecule once, it is 
only compared to the head triple of the enclosing molecule 
once. Hence, only a constant number of basic operations are 
performed for adding each triple. Hence, the time complexity 
is still O(n). 

Therefore, the complexity of the decomposition algorithm is O(n), 
linear to the size of the graph. Also note that three indices are 
maintained for subject (s), predicate (p) and object (o): (s p o), (p 
o s) and (o s p), where all the triples in the graph are stored in all 
three indices. By storing these indices in hash maps, the retrieval 
of triples takes constant time. 
The merging of molecules depends on the presence of a one-to-
one correspondence between blank nodes. Next we present the 
algorithm for finding the mapping between molecules m1 and m2, 
shown below. 

For each root triple, get the sub-molecules of m1 and compare 
them to the triples of m2. If the two triples are equal (using the 
blank node ID), then the corresponding blank nodes of the two 
triples are added to the map. This process stops when all levels of 
one molecule have been considered.  
The complexity of the findBlankNodeMap algorithm depends on 
the number of comparisons between triples of the two molecules. 
Note that having hierarchies helps to greatly reduce the number of 
comparisons as comparisons are only made for sub-molecules on 
the same level.  
Without loss of generality, let us assume that m1 has fewer levels 
of submolecules. Let the number of levels of m1 be m, and the 
number of triples on level i be n1

i. For the first m levels, let the 
number of triples of molecule m2 be n2

i. Thus the complexity of 
the findBlankNodeMap algorithm is: 
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The merging algorithm for the original molecule definition would 
require the comparison of all proteins, resulting in complexity of 
∑ ��
 � ∑ ������
���
 , which is strictly larger than the above com-
plexity result and the difference is greater with the increase in the 
number of levels.  
The extended molecules is an important component of the Bio-
MANTA project, together with the scale-out architecture, the 
molecule store will enable efficient storage, retrieval, querying 
and analysis of integrated biomolecular data. In the next section, 
we give a brief account on the performance evaluation of mole-
cule-related algorithms and the integration process. 

6. Evaluation 
We have chosen to evaluate two separate but related tasks in re-
gards to our implementation: domain-independent graph isomor-
phism and domain-specific dataset merging.  The evaluation seeks 
to remove as many redundancies between two graphs/datasets as 
possible.  Our implementation is Java based (JRDF11), therefore 
we have concentrated on Java RDF implementations in order to 
offer the best comparisons.  JRDF provides two RDF models one 
using a typical approach used by Kowari, Sesame, Jena and 
YARS (local graph) and a molecule based approach (global 
graph).  Jena is used in the first evaluation as it implements graph 
isomorphism and Sesame is used for the second as it most closely 
aligns with our implementation architecturally. 
The first evaluation seeks to identify equivalence between RDF 
graphs.  This is a significant barrier to efficient data integration - 
equivalence relationships between corresponding nodes in two 
graphs needs to be established in order to integrate them. It has 
been shown in [7] that RDF graph equality is equivalent to the 
problem of graph isomorphism [34]. Two graphs are isomorphic if 
there is a one-to-one correspondence between the sets of nodes of 
the two graphs.The algorithms described in the previous section 
have been used to identify graph isomorphism.  In order for us to 
store RDF molecules in JRDF a local graph is created from initial 
data sets, the graphs are decomposed into molecules and these are 
then merged to remove redundancy statements.  We compare this 
RDF molecule approach with Jena which uses an algorithm that 
classifies nodes into classes according to their connectedness with 
other nodes. An exhaustive matching of nodes between equivalent 
classes is then performed. The algorithm used by Jena has a worst 
case complexity that is exponential - whereas our algorithm is 
O(n2).The current weakness in our algorithm is that it must 
decompose a fully grounded graph, whereas Jena’s algorithm 
avoids doing this. The algorithm can handle certain triple 
structures better than Jena including looping blank nodes and 
chained blank nodes.  Chained blank nodes takes the form _:1 p 
_:2, _:2 p _:3 and so on whereas looping blank nodes are a chain 
with the final triple's object pointing back to the first triple's 
subject (e.g., _:1 p _:2, _:2 p _:1).  Our algorithm can decompose 
and remove 500 redundant chained blanks nodes (with a depth of 
20) in 74.9 seconds compared to Jena's 325.8 seconds.  At smaller 
depths this advantage reduces to only twice as fast at a depth of 10 
and approximate parity at a depth of 3 and smaller. 
As described in Section 4.2, the integration process is an impor-
tant component of the BioMANTA project.  We evaluated the 
performance of the integration process as implemented using Se-
same 2.0 [6] and JRDF. 
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findBlankNodeMap(m1, m2) 

    BM is a map of blank nodes from m1 to m2 (initially empty). 
    FOR EACH root triple t1 in m1 
        Find the root triple t2 from m2 that corresponds to t1. 
        LET sm1 = m1.submolecule for t1. 
        LET sm2 = m2.submolecule for t2. 
        IF sm1 != null AND sm2 != null THEN 

            nm = findBlankNodeMap(sm1, sm2). 
            IF nm = empty THEN 
                return empty map. 
            ELSE 
                add nm to BM. 

            END IF 
        ELSE IF t1.submolecule = null AND t2.submolecule = null THEN 
            add map between blank nodes in t1 and t2. 

        ELSE  
            return empty map. 
        END IF 
    END FOR 
    return BM. 

END findBlankNodeMap 



 

 

Furthermore, we compare the performance of two (translated) 
RDF documents about yeast in the IntAct database, yeast_small-
01 and yeast_small-03 12. Brief statistical data for the two RDF 
documents and the merged document is given in the table below. 
Note that out of the 1395 proteins, 85 are merged because they 
have the same UniProit IDs and genomic sequence strings. 

Table 2 - Statistics from Merging Yeast Data 
 Yeast_small-01 Yeast_small-03 Merged 

No. triples 27582 50267 70643 

No. proteins 503 893 1395 

These tests were conducted using local RDF graphs - ones that 
use a nodepool/value store which creates unique identifiers (loca-
lization). The yeast data are integrated using two different ap-
proaches: BioMANTA/JRDF and Sesame. The time taken to per-
form the integration (in seconds) is given in the table below and 
visualized in the Figure 8. 

Table 3 - Relative Performance of BioMANTA and Sesame 
Yeast Data Integration (time in seconds) 

 BioMANTA/JRDF Sesame 

Reading RDF 14.81 7.61 

Populating map 2.01 53.24 

Merging 58.97 1473.79 

Total 75.79 1534.64 

The first step reads the RDF documents, creates data structures on 
disk, ready for further processing. The second step creates a map 
on disk, populates it with pairs of UniProt IDs and protein RDF 
nodes for merging in the third step (together with the matching of 
genomic sequences). 
The total time is displayed in the bottom row. It can be seen that 
in both versions, about 80% of the total time is spent on the merg-
ing phase. This is due to the fact that during merging, for each 
protein, all relevant RDF triples, including those indirectly related 
via blank nodes, are extracted from the original RDF graph and 
then inserted into the merged graph. Effectively, RDF molecules 
are being identified, created and merged to form a new RDF graph.  
The diagram below visualizes the time taken by two approaches. 
Note that JRDF and Sesame take comparable time for preparing 
the graph and the map. However, the JRDF version of merging 
takes only about 15% of the time taken by the Sesame version. 
The savings in integration time are significant and with the in-
crease of the sizes of RDF documents, the difference will become 
more prominent.  
 

 
Figure 8 - Comparative Performance of JRDF and Sesame 

 
There are a few differences between Sesame and JRDF’s that 
effect performance.  JRDF uses directory structures to keep track 

                                                                    
12 http://biomanta.sourceforge.net/downloads/2008/02/yeast.zip 

of graphs whereas Sesame uses a fourth node and JRDF has a 
significantly faster localization process. 
The graph decomposition algorithm is essentially the same as the 
protein extraction process. Hence, we can expect with confidence 
that the decomposition, merging and subsequent querying of the 
RDF graphs would yield similar high performance. 

7. Conclusions 
Semantic Web technologies present both enormous promise and 
significant challenges to the biomedical domain. A number of 
initiatives and projects (including the W3C Semantic Web Health 
Care and Life Sciences SIG) have recognized the potential and are 
embarking on major efforts that involve the representation, inte-
gration and reasoning of biomedical datasets using RDF and 
OWL. However, this work is still at a relatively early stage. There 
are many problems associated with a lack of standards, tool proli-
feration, poor maintenance and inadequate and incoherent know-
ledge representation. This problem is further compounded with 
inherent limitations in current software and hardware architec-
tures. These have proven to be inadequate for bioinformatics 
analysis, especially when it requires processing across these rich, 
open, semantic relationships. Logical reasoning over large or 
complex ontologies is prohibitively slow – distributed data 
processing architectures offer a possible solution to this problem. 
In this paper, we have presented the BioMANTA project as our 
proposed solution to the above problem. This paper presents the 
three major components of the project: (1) a novel “scale-out” 
architecture – designed to deliver faster, more efficient semantic 
querying and inferencing of biological data, (2) the BioMANTA 
ontology, an OWL DL ontology for integrating various protein 
datasets and (3) the extended molecule and molecule store for the 
efficient storage, analysis and querying of protein RDF data with 
blank nodes. The primary advantages that the BioMANTA ap-
proach has to offer are: 
• The underlying MapReduce architecture distributes the RDF 

molecules, analysis and semantic inferencing across computa-
tional nodes in a cluster to improve scalability and perform-
ance, generate cost benefits, and reduce implementation and 
deployment difficulties. The MapReduce architecture is also 
easy to maintain and provides a common, powerful and sim-
ple way to expedite the storage, processing and analysis of 
large, complex, heterogeneous biomolecular datasets within a 
distributed environment. 

• The BioMANTA ontology reuses terms from some of the 
well-established biological ontologies, provides a uniform, 
semantic representation for protein and protein-protein inter-
action and pathway data, and supplies vocabularies for the in-
tegration of various protein datasets. 

• The extensions of hierarchies and ordering to RDF molecules 
and the RDF molecule store enable the distributed processing 
of RDF graphs with blank nodes. This approach also helps 
remove redundancies in RDF graphs. 

An initial evaluation of the performance of the prototype imple-
mentation has also been presented and shows promising results. 
However significant further work is required. Future work plans 
include: a disk-based RDF molecule store to support the storage 
and retrieval of a larger-scale set of PPI/RDF documents; distri-
bute inferencing using MapReduce processing, distribution of the 
RDF data over a distributed environment; molecule file serializa-
tion format; further evaluation based on exemplary SPARQL 
queries over the integrated PPI data based on the terms in the 
BioMANTA ontology; and integration of weightings within the 
inferencing rules, to reflect the reliability of the source data.  
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