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ABSTRACT

The computational analysis of protein-protein iattion and
biomolecular pathway data paves the way to efficiansilico
drug discovery and therapeutic target identificatitlowever,
relevant data sources are currently distributedssca wide range
of disparate, large-scale, publicly-available dat®s and reposi-
tories and are described using a wide range ofntamies and
ontologies. Sophisticated integration, manipulatipmocessing
and analysis of these datasets are required i tsdeveal pre-
viously undiscovered interactions and pathways thiltlead to
the discovery of new drugs. The BioMANTA projectfizes on
utilizing Semantic Web technologies together wittsaale-out
architecture to tackle the above challenges amideide efficient
analysis, querying, and reasoning about proteitepronteraction
data. This paper describes the initial resultshef BIOMANTA
project. The fully-developed system will allow kniedge repre-
sentation and processing that are not currentlilabla in typical
scale-out or Semantic Web databases. We presertetiign of
the architecture, basic ontology and some impleatimt details
that aim to provide efficient, scalable RDF storagel inferenc-
ing. The results of initial performance evaluatiare also pro-
vided.

Categories and Subject Descriptors

1.2.4 [Knowledge Representation Formalisms and Methdgd
Representation Languages; JI&3fd and Medical Sciencek
Biology and genetics

General Terms
Design, Experimentation, Standardization

Keywords
Semantic Web, protein-protein interaction, scalearchitecture,
RDF molecules, integration

1. INTRODUCTION

BioMANTA is a collaborative project that aims toadein silico
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drug discovery and development by identifying cdaté thera-
peutic targets through the analysis of integratgdskts that relate
molecular interactions and biochemical pathwaysh wahysio-
logical effects such as compound toxicology andegdisease
associations. This requires intensive real-timdyaism and feed-
back, across large disparate datasets in ordertécactively ex-
plore the data space and identify lead candidatesew interac-
tion networks.

Current protein-protein interaction data is disitdd across a
wide range of disparate, large-scale, publiclylabdé databases
and repositories. The integration of the data eséhdatasets is
required before researchers can perform complexyonge and
analyses over the data to reveal previously untitggathways.
Given the different naming conventions [16], diffet syntactic
and semantic representations and descriptions faadmiassive
scale of the datasets, precise and efficient intemr is a very
challenging problem. Current tools available fooibformatics
data integration and discovery vary widely in terofsquality,
maintenance and applicability. There is a prolifiera of many
different tools for performing operations on mariffeslent kinds
of data [29], but there is also a general lacktafdards for repre-
senting data, and a slow uptake of existing daadstrds [16].
Consequently, the BIOMANTA project is aiming to iel a more
standardised approach to the integration of PR, datough a set
of open source interoperable tools and datasets#mabe re-used
and applied to bioinformatics generally.

1.1 The Architecture

Existing RDF databases have typically suffered flionited scal-
ability and poor or inefficient inferencing and quieg®. While
some stores offer a high level of scalability fosiagle node,
there is little support for aggregation across ipldtnodes. Infer-
encing is typically limited to either basic opeosis across large
amounts of data or richer inferencing over smalbants of data
— we require rich, complex inferencing over largaoants of
dat€. There are many problems associated with scierdiita
analysis including: algorithm intensity, nonlinggrand limita-
tions on computer component bandwidth [17]. Theseds pre-

! http://lesw.w3.org/topic/TripleStoreScalability
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vent interactive analysis over derived datasetortier to over-

come these difficulties, Gray recommended a nunobenecha-

nisms to expedite and improve scientific data asialjl7]:

¢ The use of standardised and precise metadata toilskeshe
units, names, accuracy, provenance, capture detdds in
order to help tools compare and process the dataatly;

e The creation and adoption of common terminologissg
Semantic Web technologies (RDF and OWL);

¢ The use of set-oriented processing methods, su@oagle’'s
MapReduce [11].

So while the use of ontologies and other Semantb Y¥échnolo-
gies such as RDF can provide the ability to integreeason and
process over datasets, the magnitude of the piagessquired
and the size of the datasets have prevented ayspfédient end-
to-end solution.
In order to process data quickly, a parallel asttiire-based
techniqgue known as MapReduce [11] is becoming asingly
popular. This data processing technique providesramon way
to solve general processing problems and is closlayed with
the way data is acquired from experiments or sitraria [17]. In
a MapReduce system, a map function takes inpuvékye pairs
and transforms them to output key/value pairs. fdteice func-
tion takes the values in each unique key and prexsioatput val-
ues. MapReduce libraries are found in the majarftthe most
popular languages including Java, Javascript, Gefl, C#, Py-
thon, Ruby, and Scala. The advantages of this texatbre are
numerous [11, 45] and include:
« A programming model that is abstract, simple, higtdrallel,
powerful, easy to maintain, and easy to learn;
« An ability to efficiently leverage low-end commogihard-
ware;
¢ Easy deployment across hundreds to thousands afsnod
internal or external hosting services; and
¢ Robustness and ability to recover from data coroapor the
loss of individual nodes.
Our hypothesis is that Semantic Web applications lsanefit
from the adoption of a scale-out architecture togetwith
MapReduce data processing, in order to speed ugyiggeinfer-
encing and processing over large RDF triple stofescientific
and biomedical data.

1.2 Data and Ontologies

The primary aim of the BioMANTA project is to intede data
from protein datasets such as MPact [19], DIP [B®Act [26]

and MINT [9] using a common model for proteins grdtein-

protein interaction data to enable data harmomisafihe com-
mon model is represented as a BioOMANTA OWL-DL ootpf

that we have developed. This ontology was develdyyerkusing
vocabularies from well-established ontologies sashGene On-
tology [1], Cell Type ontology [2], BioPAX [4], PVl [21], and

others such as NCBI taxonomy. Based on the BioMANRtol-

ogy, protein datasets are converted to RDF instaand stored in
a distributed RDF triple store where they are aséd for subse-
quent analysis and querying.

The heterogeneity of naming conventions acrossdibparate
datasets is a major problem. In addition, eachsgataas its own
method for protein identification. There have bgeevious at-
tempts at naming standardization but they havelihated effect

[16]. We believe that inventing another naming @mtion or
trying to reach a consensus will not solve the fifieation prob-

8 http://biomanta.sourceforge.net/2007/07/biomantteresion_02.owl

lem. Instead, we have developed an identity rediation process.
Firstly, RDF blank nodes are used to representréswd” proteins
and provide the hub that links to the relevantieatin different
(translated) datasets to create a single repragenencompass-
ing all information about a particular protein. $tapproach en-
ables all three levels of “attitudes” of knowledgmresentation
(record, statement and domain) [38] pertaining tpaaticular
protein, to be incorporated in the RDF documenabéing highly
sophisticated, multi-level queries to be expressed.

In a scale-out architecture large RDF documentapfts) need to
be sub-divided into smaller ones for distributedgesssing. Dur-
ing querying, processing results must be mergextder to elimi-
nate duplicate protein representations. This reguthe disam-
biguation and identification of blank nodes — whismot a sim-
ple process. As each blank node’s scope exists within the
enclosing document, blank nodes are glabally addressable.
Hence, a consistent way of uniquely referring &nths required.
The concept of RDF molecules [12] was proposedabilé the
problem of addressing blank nodes by decomposingRBir
graph losslessly into a set of molecules whichrithistes updates
to graphs. In the work described here, we exteeditfinition of
RDF molecules to make the storage, retrieval aretygug more
efficient in the distributed environment.

In the remainder of this paper we describe the lhapproach to
semantic integration of biomolecular data that veerehimple-
mented and evaluated. This approach combines #iabdiity and
performance of a scale-out architecture, with ihepke and effi-
cient MapReduce programming model and Semantic Weh-
nologies to enable interactive querying, inferegcianalysis and
modelling of disparate protein-protein interactiand pathway
datasets. In Section 2, we describe related wd@kstion 3 de-
scribes the proposed application and the high-laxahiitecture of
the system. In Section 4 we present the ontologeebave devel-
oped, the datasets we have integrated to date rendypes of
queries we are aiming to support. In Section 5 wscdbe the
extended RDF molecule approach we have implemetection
6 presents an initial performance evaluation focodeposing
RDF files and the integration of proteins Sectioroicludes with
a summary of the outcomes to date and future wiarhsp

2. Related Works
2.1 The Scale-Out Architecture

For a relatively new architecture, scale-out MapRedsystems
have already received very promising and positeedback and
evaluation results. Benefits include: better ppeeformance,
successful application to many different domaims, apen source
implementations.

Google’s initial work using these MapReduce scale-tech-

nigues has included: indexing the web, statisticallysis of Web
site usage, general data storage and querying, andpsatellite
imagery processing, and social networking [8]. &nhy, Yahoo

has been applying the technology for: “search arfdrination

retrieval, machine learning and data mining, micom®mics,

community systems and media experience and deBlgh'Other

successful applications include: indexing and d$eagc web

documents [27], natural language processing [&&ning algo-
rithms for multicore systems [10] and simulatioB][.2

The Hadoopproject provides an open source implementation of

Google's scale-out MapReduce, system including Haeloop
Distribute File System (HDFS), MapReduce and HB@s®8ig-
Table clone).

4 http://hadoop.apache.org/



While there are no known publications that desctiioe use of
MapReduce scale-out architectures to store andepso®DF,
there have been initial implementations and re$e@rto similar,
overlapping areas including: RDF stores using “stanothing”
clustering, extending MapReduce higher-level opanat and
column databases for storing and querying RDF.
The YARS2 federated RDF repository and the SWSHEnédeic
Web Search Engine) architecture use a “sharedngithpproach
to achieve scalability [20]. This has some concapsimilarities
to our data acquisition architecture. Howeversisiill bound to
indexing and querying, and does not share thebatas of a
MapReduce scale-out solution with its ability tafpem arbitrary
processing and indexing schemes.
The design of BigTable and HBase is similar to ooldatabases
such as Sybase 1Q, LucidDB, Metakit, KDB, C-Stet2][and
Monet [5]. These databases were specifically desigo get the
best performance from modern hardware architectlinere is
also some initial research currently underway itigating the use
of C-Store and MonetDB [31] for storing and quegyRDF data
as well as using these databases to handle smeatdth [22]. Our
approach differs from these approaches in a nuotweays:
* We create a generic store for triples of any pegéicrather
than creating one table per predicate;
e Our clustered approach differs substantially frdveirt data-
base architecture;
* We do not support ACID (Atomicity, Consistency, |&@®n
and Durability) database transactions;
¢ Column databases do not have a MapReduce-like gsince
framework, and don’t combine processing and dataage:
ment in the same way.
To the best of our knowledge, the work describedhia paper
represents the first attempt to apply a scale-@ittiluted com-
puting approach to expedite the querying and peicgof data in
a large scale-out RDF triple store. Although wecgmlly apply
it to protein-protein interaction (PPI) data, thare undoubtedly
many other suitable applications that require titegration and
processing of large scale distributed datasets (@igatology,
geosciences, astronomy).

2.2 RDF Molecules

The concept of RDF molecules was first proposeil2] as a

method that provides the optimum level of grantyabetween

RDF graphs and triples. Given an RDF gr&hhthe set of mole-
cules are the smallest sets of triples into wiGchan be decom-
posed without loss of information. Figutefrom [12] shows the
different granularity levels of various RDF constsi This illu-

strates that RDF molecules sit between named grgg8jsand

triples in terms of granularity.

Universal Graph

RDF Document
Named Graph
Molecule

Figure 1 - Relative Granularity Levels of RDF Constucts.

Formally, given an RDF grap® and a background ontolody, a
pair of operatorgd, m)is defined for decomposition and merging.
M =d(G,W)
G =m(M,W)

Where M is the set of molecules as the result of decontipasbf

G with regards toV using decomposition operatdr The merg-
ing operatorm mergesM back to the same grapgh, also with
respect to the background ontolddy The set of moleculdd are

mutually independent in the sense that no blankeriedshared
among them. Hence, they can be individually proedsnd later
merged to construct the RDF gra@Hosslessly.

Three types of RDF nodes were defined based onghainded-

ness. A node is:

1. Naturally grounded if it is either a URI refererarea literal;

2. Functionally grounded if it is a blank node andursquely
determined by a functional/inverse functional propend
another node;

3. Contextually grounded if it is a blank node and fuwiction-
ally grounded.

There are also three types of molecules, basecertypes of

nodes they contain:

1. Terminal molecules contain only grounded nodes @nd/
functionally grounded blank nodes, which are albsed”.

2. Non-terminal molecules contain one “open” blank @od

3. Contextual molecules contain at least one contdyxtua
grounded blank node.

Two types of decomposition were defined: naive dgmusition,
in which no background ontology is consulted; andcfional
decomposition, in which an OWL ontology is querfed func-
tional dependency between nodes.
A number of extensions to RDF similar to RDF molesuhave
also been proposed in the pd$amed graphs[23] are an exten-
sion of RDF that enables the specification of anFR@raph
through a set of RDF statements. The division affesbents into
sub-graphs is arbitrary. The ontology author igpoesible for
manually constructing the graphs and naming theencd no
automated process is available.

Concise Bounded Description(CBD) [41] is defined as a sub

graph of statements about a particular resouroeerGa particular

resource, its CBD contains:

1. All statements in the source graph in which thgexttof the
statement is the particular resource;

2. Recursively, for all statements identified in thiograph thus
far having a blank node object, all statementshim source
graph where the subject of the statement is thekhitade in
question and which are not already included irstitegraph.

3. Recursively, for all statements included in thegsaph thus
far, for all reifications of each statement in gmrce graph,
the CBD beginning from the rdf:Statement node aheifi-
cation.

A drawback of CBD is that it only looks at subjectdes in RDF

triples. Hence, the CBD created for a resource modg not in-

clude all the information.

Minimum Self-contained Graphs (MSG) [15] is a proposal for

the decomposition of an RDF graph into self-corgdiaubgraphs.

Given an RDF statement, its corresponding MSG thesu(a) the

statement itself and recursively, and (b) for bk blank nodes

involvedin the MSG so far, all the statements of MSGs Iving
these blank nodes. Compared to CBD, MSG lookstdesients

to be included in the MSG in both directions. Henteesults in a

lossless decomposition. One potential drawback 8Gvbccurs

when the graphs contain many blank nodes. In thiaton, the
resulting subgraphs may be very large.

Based on the above comparison, RDF molecules prdtiel best

granularity as they offer automated, unambiguoud kssless

decomposition, whilst not suffering from the potahscale prob-
lem that MSGs face.



The REDD algorithm [13] was defined to optimR®F sto-
rage by reducing redundancy caused by blank nddéads re-
dundant blank nodes by repeatedly identifying “cmriad sub-
graphs”, constructing and executing queries onettsggraphs.
The complexity of the REDD algorithm ®(%), wheren is the
number of triples in the graph. Creating a chditriples (a con-
nected subgraph) by navigating predicates was stegji@s part
of the REDD algorithm. It was also suggested ¢hatple order-
ing be created so that inclusion of other connestéagraphs or
supergraphs be determined, apart from simple aguallhese
concepts are also included in our extension of Rkecules.

3. The BioMANTA Project

3.1 The Biomolecular Application

The first step in the BioMANTA project was to id#ptthe rele-
vant available datasets that we wanted to integaai@ to develop
the common model or ontology that we would usedesd. Can-
didate databases included BIND, DIP, HPRD, KEGGadRame,
Ingenuity and GeneGo. Due to the intrinsic repregém of se-
mantic data as a network of triples, protein-protiiteraction
data is highly amenable to representation in Semsv¢b form.
While it might be assumed that an interaction cooéd repre-
sented simply as a single triple (e.g. a protetein interaction:
<proteinA> <interactsWith> <proteinB>) much mordairmation
must be included to capture biologically-relevaspects of inter-
actions. A protein, for example, has a number tibattes that
must be included in its representation. These delsimple at-
tributes that can be used to identify proteinshsag “full name”,
“short name”, “sequence”, “species” and “gene sythkas well
as any number of “synonyms” and “accession numbaevkich
may be associated with the protein in various nessu To sup-
port these identifying attributes, a model of atgiro would re-
quire a minimum of seven triples. Interactions aksguire multi-
ple triples for accurate representation. Key cote@pthe repre-
sentation of interactions include “participantshtéraction type”,
“interaction detection method”, and “references’amy attributes
are composed of multiple attributes; for examplérederence”
may have an associated “PubMed Identifier” and ttalot’,
which in turn may have a “PubMed URL". An exampletlois
structure is shown in Figure 2.

“Eukaryotic translation
initiation factor 6”

AccesSion DataBase

[ Q12522 J [ “UniProt” J

[“YPROlGCJ { “MIPS” J

Figure 2 - A protein with relevant information repr esented as
triples.

A number of public efforts have used RDF and OWltepresent
many types of biological information, including pem interac-
tion data. The UniProt [44] database was recentfyrated into a
more semantic form. YeastHub [25] also uses Semameb
technologies to organize and integrate biologicatadsources.

The Semantic Web Applications in Neuromedicine (S\YAl4]
project is utilizing semantic technologies to eeabbllaborative
research. The BioPAX initiative is developing aad&rmat for
use in the modeling of numerous levels of biologicathway
information. The Reactome project [24] has proviitsddata in
the BioPAX Level 2 format [4].

We chose to use OWL DL to construct a high-leveblmgy to
integrate concepts from relevant biological ont@sgand vo-
cabularies. We reviewed ontologies listed by therm©OBiomedi-
cal Ontology Foundry (OBO Foundry) [40] and theibiaal Cen-
ter for Biomedical Ontology (NCBO) [35]. Of the apgimately
70 ontologies listed at these sites, around thuegters are writ-
ten using the OBO format, with the remainder udiognats in-
cluding OWL, Protégé and plain text. Some of thesesh as
BioPAX and the Protein Standards Initiative Molegulnterac-
tion vocabulary (PSI-MI) [21], provide significanbverage over
concepts relevant to the domain. Others, suche&tne Ontol-
ogy (GO), Sequence Ontology and the NCBI-taxonomly @-
tersect with the field.

In particular, merged components from two ontolegiere used
to describe molecular interactions in our ontologsthe OWL
ontology BioPAX and the OBO ontology PSI-MI. BioPAX
designed to describe pathway rather than specifiecular inter-
action data. However, of the approximately 40 @asand 70
properties that BioPAX defined, many are key cotsemd rela-
tionships necessary to describe molecular intenasti The PSI-
MI vocabulary on the other hand, is specificallysidaed to de-
scribe molecular interaction data and captures x80@epts from
the domain. However, it is represented in OBO afmiesses only
hierarchical relationships between classes. Hemegdopted and
merged components from both ontologies during theelbpment
of the BIOMANTA ontology.

Four protein interaction databases were initiaéiiested for con-
version to RDF. They are MPact, DIP, IntAct, and\Wll These
resources were selected for several reasons: tleegaaticipants
in the International Molecular Exchange (IMEX) Coraim?®,
which makes data available under the Creative Camsnlioense

arrangemenfs they contain human-curated interaction data which

is better quality than automatically mined or potelil interaction
data, and these datasets are available for dowmfoadstandard
data exchange format, the Protein Standards ingigPSI) Mo-
lecular Interaction (MI) XML format [21]. PSI-MI pwrides a
hierarchical controlled vocabulary for recordinpimation about
molecular interactions. While this format is sultalfor the ex-
change of data between resources, it lacks théyabfl descrip-
tion frameworks like RDF and OWL to support Semamnieb
applications. These databases also contain a &myg humber of
proteins and interaction instances. In excessofdilion triples
are required to express the interaction data coedain these
resources (Table 1).

A significant saving in triple numbers may be agk by group-
ing proteins or interactions by some common prop#rat can
then be represented in the metadata of the docucweréining
that set. For example, provenance information saigthe source
database of interactions, version information, datguisition
dates and license information can be recorded agndent meta-
data, thus removing the necessity to record tHisrimation for
each interaction to which it pertains. Likewise,pifoteins are
grouped according to species, then this attributepresented in
the graph metadata for all proteins contained éngtaph, remov-

® http://imex.sourceforge.net/
8 http://creativecommons.org/



ing many thousands of triples from the instance&.dBven with

the shift of significant amounts of information angraph meta-
data, a large number of triples are required toasgnt each inter-
action, regardless of the ontology selected. Weehaanserva-
tively estimated that each protein requires teplds, while each
interaction requires fifteen. While these numbeey reeem small,
when considering the volume of interaction inforimatstored in

publicly available resources, it becomes obvioas the resulting
RDF data sets for molecular interactions is indfaer of millions

of triples. This number is fluid, as it dependstba information

being modelled and the techniques used to expness.t

Table 1 - Estimated IMEX Protein-Protein Data Sizes

Database MPact DIP IntAct MINT
Number of pro- 5028 19490 57360 28186
teins

Number of binary 16504 56186 152100 103808
interactions

Estimated protein 50280 194900 573600 281860
triples

Estimated inter- 247560 842790 2281500 557120
action triples

Total per DB 297840 1037690 2855100

Once this data is represented in RDF, inferenangsied to infer
additional information that is the logical conseqee of the given
statements. For example, if two proteins are frbm same spe-
cies, and have the same protein sequence, but diffeeent
names, it may be inferred that those names arengyma Like-
wise, if an interaction is purported to occur beaweroteins from
different species (for example, a human and a texnstmay be
inferred that this interaction will never occurriature, and is thus
likely to be a false positive interaction.

3.2 The Architecture

The BioMANTA system requires the use of both ontame batch
processing. The online processes are performedstgexisting
indices, and allow users to quickly query agains¢ tpre-
computed datasets. The batch processing of quergsorts more
complicated and potentially non-terminating proessd-igure 3
shows the general processing that occurs withirBib& ANTA
system. The instance data and ontologies (eitreepmcessed or
generated by crawling data sources on the Web usirigh) are
converted to RDF that conforms with the BioMANTAtology.
Pellet is then used to infer new statements direeflated to the
instances being added. RDF/XML is generated and tkad in
by the cluster into the HBase store. The RDF griphroken
down into smaller, sub-graphs and then added. HBaae in-
dexes and stores the data across Hadoop’s Digtdltite System.
The query engine processes the queries and reherimmmediate
results, which may indicate that further processmgequired. If
further processing is required, the user is natifend the addi-
tional data transformation jobs are added to poties data.
Examples of simple queries include: join and oplofheft outer
join) queries, Lucene text searching including Rid&rals, pre-
computed inferred statements, pre-computed neteyaekies such
as protein to protein interactions, and identifieapping. Exam-
ples of batched operations include: shortest patrigs, ad-hoc
computing on interaction networks, and probabdisfiieries. For
the current purposes of determining the qualityhefinteractions
integrated, we perform queries such as: the nuwbieteractions

with specific proteins, interactions that occurhnéertain types of
observations, the number of experimental methodsfanevery

PubMeD ID how many interactions are recorded.
|

Quéries
v A Node in the Cluster
Query
Engine
Instance Q |
Data ueries
Ontologies Responses
v v \
Data Data
Conversion %RDF HBase Transforms

i

Hadoop DFS

Figure 3 - BIoOMANTA Architecture.

1838980 4. A Uniform Representation of Biomedical

Data in OWL

4.1 The BioMANTA Ontology

The BioMANTA ontology is an OWL DL ontology that ks on
existing biological ontologies, such as BioPAX Leg2€4], Cell
Type ontology [2] Gene Ontology [1], and NCBI Taxomy’ , to
enable the integration of the various facets ofviedge about
protein-protein interactions. The ontology combirtke use of
top-down and bottom-up development taking termapgsopriate
in order to leverage existing datasets. We hawvsee vocabula-
ries where appropriate such as the Cell Type ogjola struc-
tured controlled vocabulafyaken from OBO Foundry that was
converted to OWL formd}. Figure 4 shows the major compo-
nents of the BioMANTA ontology.

BioMANTA ontology

Observations

Interaction welghts

BioPax
Ontology

PSI-Molecular Interaction Ontology

Interaction detection methods

[ |
[NCBI Taxonomy ]
[ )

Phylogenetic relationships

St ats Gene Ontology Cellular Component

Cross references Hierarchy

Subcellular localisations

Interactions

Pathways

[Cell Type Ontology

Cell type ]

Figure 4 - Major Components of the BlIoOMANTA ontology.

Our approach to knowledge representation combiwesaf the

three levels of attitudes to data modeling: recand statement
[37]. Our ontology allows us to express: “therésexa protein
(the record level) by asserting its existence, @datdbase A says it
has these properties and database B says it hees pheperties”

7 http://www.ncbi.nim.nih.gov/Taxonomy/
8 http://obofoundry.org/cgi-bin/detail.cgi?id=cell
9 http://biomanta.sourceforge.net/2007/07/celltypstaince_edit.owl



(the statement level) by recording provenance méion. We
also align the experimental provenance informatfstatement
level) to improve query quality — allowing us tétdir out various
experimental types. This work is based on obpetiification or
record linkage [3] which seeks to integrate varidat sets across
databases and the Semantic Web [18]. In our cumandeling
approach we do not capture knowledge on the dofea#l yet.
However, domain level modeling may be incorporaaed later
stage for more complex reasoning.

In the ontology, the hierarchical but expressproperties of
PSI-MlI, such as those used to record participamisexperimen-
tal methods of interactions, are combined with ¢xéensibility
and richer relationships available in BioPAX (asiexpressed in
OWL). Among others, the ontology includes defiiis of the
following key concepts:

¢ Observation types including: Experimental, Predictad In-
ferred,

« Provenance information including: data source, tyye of
experiment, the cell type, inferencing method, salbdlar lo-
cation and observation reference (a BioPAX publicatross
reference).

While BioPAX is expressed in OWL there are numerprsble-

matic issues associated with its modeling technjgidg[36] [30].

One of the most detrimental to our requirementthes lack of

context or meaning when tlopenControlledVocabulary

class is used to include links to external ternes.oVercome this,

we developed a process of taking converted OBOW{_®@ntol-

ogies and defining classes and instances to refrésese richer
relationships.

By mapping and linking to existing component ongiés using

OWL object properties, the BioMANTA ontology servas a

well-structured model for representing RDF instandéese RDF

instances represent an integrated view of indidiguateins and

all of the information about them. The next subisecprovides a

brief account of the integration process.

4.2 The Integration Process and Datasets
Various protein datasets such as DIP, IntAct, MPactl UniProt
[44] often contain partially overlapping informaticabout pro-
teins and genes. The integration of the data isetltatasets pro-
vides a uniform representation of a significantgmmion of the
available information pertaining to protein-protdimeractions,
allowing for flexible querying on topics such asstie/organ ex-
pressions, species, genomic sequences, developrsigtés, etc.

There are two major challenges that must be oveedonperform

this integration. Firstly, different datasets oftese different nam-

ing conventions; hence, it is difficult but impaortao be able to
identify the “same” protein in different datasdter example, the
protein identified as “27628” in DIP is the sametgin as the one
identified as “115 dax human” in IntAct. Both id#iers are

maintained, to allow querying and retrieval of asated data and
properties from both databases. Secondly, as dstasmetimes
contain omissions, duplication, inconsistency aonde it is not
advisable to rely on the matching of names as dication of the

same protein. Given the above challenges, we dédideise a

combination of UniProt IDs and genomic sequencelidtinguish

and identify proteins. This helps to ensure thénhjgality of the
resultant data. The integration process can beemually de-
scribed in the following steps.

1. PSI-MI to RDF translation - The XML datasets in PSI-MI
[21] format are translated to RDF. This involvesdeking all
of the information associated with proteins anérattions us-
ing the RDF constructs, concepts and propertieise®in the

BioMANTA ontology. For example, the organism, theedl
identifiers and the genomic sequence are extraateldasso-
ciated with each protein.

2. UniProt ID augmentation — Because UniProt is a comprehen-
sive protein database, we decided to use UniPmiriDhe in-
tegration process to merge proteins from differdatasets.
However, not all datasets contain UniProt IDs. his tstep,
with the help of external mapping filg82] between local
MPact IDs (CYGD IDs)° and UniProt IDs, a UniProt ID is
added to each protein instance.

3. Sequence augmentation -Proteins that have genomic se-
quences can be disambiguated by evaluating theesegquus-
ing tools such as Blast. Equivalent sequenceshare tised to
identify equivalent proteins across data souraethik step, all
the missing sequences of proteins are added tdrbie in-
stances from external mapping files for individdatasets.

4. Protein integration - the final step involves identifying equiv-
alent proteins in different datasets (by matchingRdot IDs
and sequences) and merging them into a singlegramifepre-
sentation. Proteins with different UniProt IDs amsidered to
be different; those with same UniProt IDs but déf@ se-
qguences result in warnings; proteins with matchibg and se-
quences will be merged into a single protein, togetwith
their annotations.

Instead of creating another naming convention we hknk

nodes to represent proteins and add propertidseta {including

provenance information). Blank nodes are also usatpresent
interactions, cross references, experimental metheid., for the
benefits of time and cost savings [18]. Figure @vabdepicts such

a merged protein. The next section details our cggr to the

efficient processing of RDF graphs with blank nodes

5. Extended Molecules

In order to incorporate as many datasets as pessgilthout re-
striction, we decided to allow blank nodes in RDécuiments.
This decision presents a challenge for the distetbyprocessing
of RDF documents as blank nodes are only addressabally
within a document. RDF molecules [12] provide a hagdsm for
decomposing an RDF graph into a set of self-coathmolecules,
each of which contains all (transitively) connect#enk nodes.
This enables an RDF graph to be losslessly decosdpatistri-
buted for processing and subsequently merged, pitdé in
Figure 5 below.

Logical Physical
©) ©) O
© ©) ©
©) ©) ©)
® O] ® ®
RDF Graph Node1 Node2 Node 3

Figure 5 — An RDF Graph as molecules across multiplnodes
in a computing cluster.

In order for an RDF molecule store to support effit storage
and querying of large-scale RDF documents, it ipdrtant that
basic operations such as decomposition and meogingolecules
is efficient. Hence we extend the original defimitiof molecules
in [12] to include (1) hierarchy and (2) ordering.

10 ftp:/fftpmips.gsf.delyeast/EBI/



5.1 Hierarchies

In the original definition, molecules are flat ardch molecule
contains a set of RDF triples. We believe havirggdnichical mo-
lecules helps to better reflect the structure ef uhderlying RDF
document. These extensions to molecules accuraéglgct a
structure found in biological and other data aratesent relation-
ships found in databases similar to where oneioelaefers to
another via a foreign key.

Another important reason for adding hierarchietoibe able to
identify equivalent blank nodes based @mntextinstead of on
internal identifiers. Given the same context we chtermine
blank node equivalence and remove redundant infiloma
Figure 6 below shows a simplified observed profmiotein inte-
raction in N3 format.

{_:1 observedinteraction _:2}

{_:1 type ExperimentalObservation
{_:2 participant _:3}

{_:3 hasUniprotID ‘p32379'}

{_:2 participant _:4}

{ :4 hasUniprotID ‘p46949'}

Figure 6 A Protein-Protein Interaction in RDF.
The nested structure of the above RDF fragment atate
represented by the original molecules since it il a set con-
taining all the triples. By allowing molecules t@ntain sub-
molecules, it is possible to represent the stragctulhe above
graph is decomposed into a molecule as shown r&ig.
The different indentation levels signify differemésting levels or
submolecules. The “root triples” of a molecule #re triples in
the first level of the molecule. A “head triples’the first triple, as
they are ordered, in the set of root triples. #King triple” is a
triple that has two blank nodes, the second blamwlerinking to a
submolecule.

{ _:1 type ExperimentalObservation }
{ :1 observedinteraction :2}

{_:2 participant _:3}

{ _:3 hasUniprotID ‘p32379’ }

{ _:2 participant _:4}

{ _:4 hasUniprotID ‘p46949” }

Figure 7 The Hierarchical Molecule Corresponding tathe
Triples in Figure 6.
Figure 7 shows a molecule with three levels, twat taples (the
first two) and the head triple is “_:1 type ExpesimalObserva-
tion”.

5.2 Ordering

The other major extension to molecules that we émgnted is
ordering Maintaining ordering is important for the effintecom-
parison of molecules and triples for graph and swkemerging.

The ordering is defined over triples given a molecThe “less
than” relationship between two triples is basedt@ancomparison
between their subjects, predicates and objects.

For two nodes, the ordering is determined by thieviang rules.

« Node type:
- Blank node type, which is less than;
- URI reference node type, which is less than;
— Literal node type.
* Node value
— Comparison of string value of the nodes
The ordering of two triples is based on the conguariof their
nodes in turn. If subject nodes are equal, preelicaties are com-

pared. If predicate nodes are equal, then the bbhfes must be
compared.

The comparison of two molecules is based on thd trgdes they
have. For moleculesnolecule and moleculg and their head
triplest; and t,, moleculg 0 moleculg iff t; O t,, where the
symbol O represents<,= or >.

5.3 Algorithms

In this section, we present algorithms for moleeelated opera-

tions such as naive graph decomposition (no baakgro@ntolo-

gy) and molecule merging. There are a number shrigges
associated with this approach compared to the ifumalt ap-
proach:

* Less duplication across molecules — the functioleabmposi-
tion will generally result in blank nodes sharedoas multiple
molecules whereas naive decomposition will genesatemo-
lecule containing all such blank nodes.

* As the decomposition and processing does not reedrtsult
an ontology, it is generally faster and is eagiéntplement.
As described in [12], the naive graph decomposifitorithm
decomposes a graph into a set of molecules. Thengazsition of
a local RDF graph into a set of molecules is dbsdiin the
pseudocode shown below. We rely on the equalitthefblank
node identifiers (a combination of a UUID and aregate numer-

ic identifier) when decomposing triples from a lbgeaph.

AT is the set of added triples (initially empty).
LGT is a sorted set in descending order (defined above) of triples from a local
graph.
FOR EACH Triple T from LGT not in AT
Create a new molecule M adding T.
IF T is Grounded THEN
Add T to AT.
ELSE
findEnclosedTriples(M).
END IF
END FOR

findEnclosedTriples(M)
T is the HeadTriple of M.
BTS is a set of all triples which contain T's blank nodes.
FOR EACH Triple BT from BTS not in AT
Create a new molecule SM adding BT.
Add BT to AT.
findEnclosedTriples(SM)
IF BT is a Link Triple THEN
IF BT's object node equals M's subject node THEN
Add M to SM.
SM becomes M.
ELSE
Add SM to M.
END IF
ELSE
Add BT to M.
END IF
END FOR
Add all triples found to the set AT.

END findEnclosedTriples

There are three cases to consider when identiifigmolecules:

¢ If the head triple is a link triple and the triple add has a
subject that is equal to its object then the tripladded to the
head triple.

e If the identified sub-molecule contains a tripleigfhlinks to
the head of the current molecule then the curresiecole is
added to the sub-molecule and the molecule used fhen
on is the sub-molecule. In other words, the casterdf the
molecule are added to the sub-molecule which besadime
molecule used in future operations.

¢ If the identified sub-molecule does not contaimiplé which
links to the current molecule then it is addedhe turrent
molecule.

The complexity of the above graph decompositiorortigm can

be analyzed as follows. Assume that all basic djper® such as



adding one triple to a molecule, comparison betweannodes,
getting the subject/object node from a triple; itgstwhether a
triple is a blank node, and creating a molecule,, etl take con-

stant timeO(1). The complexity of the algorithm depends on the

number of blank nodes of the graph being decompdsedex-

ample, suppose we have a gr&ptvith n triples:

e The best case is when no triple contains blank solethis
case, both the subject and object nodes of eaple tare
tested for blank node. The triples are subsequewttied to a
new molecule. Four constant-time operations aréopaed
for n triples. Hence, the complexity is linear to theesof the
graphO(n).

¢« The worst case is when all triples share, reculsiv@me
blank nodes and they end up in one molecule witbvels
(one triple at a level). In this case, the moledsla chain of
triples. As a triple is only added to a (sub) malemnce, it is
only compared to the head triple of the enclosingecule
once. Hence, only a constant number of basic dpasare
performed for adding each triple. Hence, the timmglexity
is still O(n).

Therefore, the complexity of the decomposition atgm is O(n),

linear to the size of the graph. Also note thae¢hindices are

maintained for subject (s), predicate (p) and dkjer (s p 0), (p

0 s) and (o s p), where all the triples in the brape stored in all

three indices. By storing these indices in hashantye retrieval

of triples takes constant time.

The merging of molecules depends on the preseneeauie-to-

one correspondence between blank nodes. Next weerdrehe

algorithm for finding the mapping between molecutgsand m2,
shown below.

findBlankNodeMap(m1, m2)
BM is a map of blank nodes from m1 to m2 (initially empty).
FOR EACH root triple t1 in m1
Find the root triple t2 from m2 that corresponds to t1.
LET sm1 = m1l.submolecule for t1.
LET sm2 = m2.submolecule for t2.
IF sm1 != null AND sm2 != null THEN
nm = findBlankNodeMap(sm1, sm2).
IF nm = empty THEN
return empty map.
ELSE
add nm to BM.
END IF
ELSE IF t1.submolecule = null AND t2.submolecule = null THEN
add map between blank nodes in t1 and t2.
ELSE
return empty map.
END IF
END FOR
return BM.
END findBlankNodeMap

For each root triple, get the sub-molecules of mél aompare
them to the triples of m2. If the two triples amgual (using the
blank node ID), then the corresponding blank noafethe two

triples are added to the map. This process stosnah levels of
one molecule have been considered.

The complexity of the findBlankNodeMap algorithmpaéeds on
the number of comparisons between triples of the rivolecules.
Note that having hierarchies helps to greatly redhe number of
comparisons as comparisons are only made for suéenies on
the same level.

Without loss of generality, let us assume that ag tewer levels
of submolecules. Let the number of levels of mineand the
number of triples on level be n. For the firstm levels, let the
number of triples of molecule m2 bé. Thus the complexity of
the findBlankNodeMap algorithm is:

m
c3 =n%*n%+---+n}n*nm=2ni1*ni2

i=1
The merging algorithm for the original moleculeidéfon would
require the comparison of all proteins, resultingcomplexity of
ym nl«¥™ n?, which is strictly larger than the above com-
plexity result and the difference is greater whb tncrease in the
number of levels.
The extended molecules is an important componerh@fBio-
MANTA project, together with the scale-out architee, the
molecule store will enable efficient storage, eatal, querying
and analysis of integrated biomolecular data. Bribxt section,
we give a brief account on the performance evanatif mole-
cule-related algorithms and the integration process

6. Evaluation

We have chosen to evaluate two separate but refaséd in re-
gards to our implementation: domain-independenplgiaomor-
phism and domain-specific dataset merging. Théuatian seeks
to remove as many redundancies between two graghskts as
possible. Our implementation is Java based (JRDgherefore
we have concentrated on Java RDF implementatiorsdar to
offer the best comparisons. JRDF provides two RRieels one
using a typical approach used by Kowari, Sesampa Jnd
YARS (local graph) and a molecule based approadbbét
graph). Jenais used in the first evaluation &mplements graph
isomorphism and Sesame is used for the secondhassitclosely
aligns with our implementation architecturally.

The first evaluation seeks to identify equivaletetween RDF
graphs. This is a significant barrier to efficigfsta integration -
equivalence relationships between correspondingesad two
graphs needs to be established in order to inedham. It has
been shown in [7] that RDF graph equality is eqieintito the
problem of graph isomorphism [34]. Two graphs ameriorphic if
there is a one-to-one correspondence between thefseodes of
the two graphs.The algorithms described in the iptevsection
have been used to identify graph isomorphism. riteiofor us to
store RDF molecules in JRDF a local graph is ctefitam initial
data sets, the graphs are decomposed into molemudethese are
then merged to remove redundancy statements. \Wipare this
RDF molecule approach with Jena which uses an itigorthat
classifies nodes into classes according to theinectedness with
other nodes. An exhaustive matching of nodes beteeqeivalent
classes is then performed. The algorithm used bg heas a worst
case complexity that is exponential - whereas dgorghm is
O(r?).The current weakness in our algorithm is that iist
decompose a fully grounded graph, whereas Jengarithim
avoids doing this. The algorithm can handle certsiiple
structures better than Jena including looping blaokies and
chained blank nodes. Chained blank nodes takefothe _:1 p
_:2, _:2 p _:3 and so on whereas looping blank s@de a chain
with the final triple's object pointing back to tHiest triple's
subject (e.g., _:1 p _:2, :2 p_:1). Our algenitban decompose
and remove 500 redundant chained blanks nodes éndttpth of
20) in 74.9 seconds compared to Jena's 325.8 secéicdsmaller
depths this advantage reduces to only twice asfastiepth of 10
and approximate parity at a depth of 3 and smaller.

As described in Section 4.2, the integration predesan impor-
tant component of the BioMANTA project. We evakmtthe
performance of the integration process as impleetenosing Se-
same 2.0 [6] and JRDF.

1 http://jrdf.sourceforge.net/



Furthermore, we compare the performance of twongteded)
RDF documents about yeast in the IntAct databgesast _small-
01 andyeast_small-03”. Brief statistical data for the two RDF
documents and the merged document is given inathle below.
Note that out of the 1395 proteins, 85 are mergethbise they
have the same UniProit IDs and genomic sequeniogsir

Table 2 - Statistics from Merging Yeast Data

Yeast_small-01 Yeast_small-03 Merged
27582 50267 70643

No. triples

No. proteins 503 893 1395

These tests were conducted using local RDF grapires that
use a nodepool/value store which creates uniqusifies (loca-
lization). The yeast data are integrated using tiferent ap-
proaches: BioMANTA/JRDF and Sesame. The time takeaper-
form the integration (in seconds) is given in thblé¢ below and
visualized in the Figure 8.
Table 3 - Relative Performance of BIoOMANTA and Sesae
Yeast Data Integration (time in seconds

BioMANTA/JRDF Sesame

Reading RDF 14.81 7.61
Populating map 2.01 53.24
Merging 58.97 1473.79
Total 75.79 1534.64

The first step reads the RDF documents, createsstiatctures on
disk, ready for further processing. The second steptes a map
on disk, populates it with pairs of UniProt IDs amatein RDF
nodes for merging in the third step (together with matching of
genomic sequences).

The total time is displayed in the bottom row. dndbe seen that
in both versions, about 80% of the total time isrgpn the merg-
ing phase. This is due to the fact that during mnexgfor each
protein, all relevant RDF triples, including thaedirectly related
via blank nodes, are extracted from the originalFRipaph and
then inserted into the merged graph. EffectivelpFRmolecules
are being identified, created and merged to formeva RDF graph.
The diagram below visualizes the time taken by approaches.
Note that JRDF and Sesame take comparable timprémaring
the graph and the map. However, the JRDF versiomexfging
takes only about 15% of the time taken by the Sesaension.
The savings in integration time are significant amith the in-
crease of the sizes of RDF documents, the differevitt become
more prominent.

2000 .
Merging
1500 +—p— proteins
1000 1 "~ ®Populating
500 —m—F1 — maps
0 T 1 mReading
JRDF Sesame graphs

Figure 8 - Comparative Performance of JRDF and Sesae

There are a few differences between Sesame and’'§Rbét
effect performance. JRDF uses directory structtodseep track

12 http://biomanta.sourceforge.net/downloads/200§st. zip

of graphs whereas Sesame uses a fourth node and BRDa
significantly faster localization process.

The graph decomposition algorithm is essentialey game as the
protein extraction process. Hence, we can expett eznfidence
that the decomposition, merging and subsequentyimgeof the

RDF graphs would yield similar high performance.

7. Conclusions
Semantic Web technologies present both enormousigpeoand
significant challenges to the biomedical domainnédmber of
initiatives and projects (including the W3C Semamwieb Health
Care and Life Sciences SIG) have recognized thenpiat and are
embarking on major efforts that involve the repnéaton, inte-
gration and reasoning of biomedical datasets ustf and
OWL. However, this work is still at a relativelyrbastage. There
are many problems associated with a lack of staisdanol proli-
feration, poor maintenance and inadequate and @reah know-
ledge representation. This problem is further cammpled with
inherent limitations in current software and hardwarchitec-
tures. These have proven to be inadequate for fbromatics
analysis, especially when it requires processingsacthese rich,
open, semantic relationships. Logical reasoningr daege or
complex ontologies is prohibitively slow — distried data
processing architectures offer a possible solutidhis problem.

In this paper, we have presented the BioMANTA pbjgs our

proposed solution to the above problem. This papesents the

three major components of the project: (1) a ndseble-out”
architecture — designed to deliver faster, moreiefit semantic
querying and inferencing of biological data, (2¢ BBioMANTA

ontology, an OWL DL ontology for integrating var®protein
datasets and (3) the extended molecule and molstade for the
efficient storage, analysis and querying of proRDF data with
blank nodes. The primary advantages that the BioWMANip-

proach has to offer are:

* The underlying MapReduce architecture distributes RDF
molecules, analysis and semantic inferencing a@osgputa-
tional nodes in a cluster to improve scalabilityd grerform-
ance, generate cost benefits, and reduce impletimentand
deployment difficulties. The MapReduce architectigalso
easy to maintain and provides a common, powerfdl sim-
ple way to expedite the storage, processing antysiaaof
large, complex, heterogeneous biomolecular datag#ti a
distributed environment.

« The BioMANTA ontology reuses terms from some of the
well-established biological ontologies, providesuaiform,
semantic representation for protein and proteirigmointer-
action and pathway data, and supplies vocabultoiethe in-
tegration of various protein datasets.

* The extensions of hierarchies and ordering to RRAfeoules
and the RDF molecule store enable the distributedgssing
of RDF graphs with blank nodes. This approach &lelps
remove redundancies in RDF graphs.

An initial evaluation of the performance of the fotgpe imple-

mentation has also been presented and shows pngmissults.

However significant further work is required. Fugurvork plans

include: a disk-based RDF molecule store to supihertstorage

and retrieval of a larger-scale set of PPI/RDF doeuts; distri-
bute inferencing using MapReduce processing, Higion of the

RDF data over a distributed environment; molecilederializa-

tion format; further evaluation based on exempl&yARQL

queries over the integrated PPI data based onetimestin the

BioMANTA ontology; and integration of weightings thin the

inferencing rules, to reflect the reliability ofelsource data.
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