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Overview

• Motivation.

• Scale-Out Architecture.

• RDF Molecules and Extensions.

• Ontology Development, Integration and • Ontology Development, Integration and 

Model.

• Results.
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Motivation

• Many projects (size, scope, scale).

• Many different sizes of data (MB, GB, TB, PB).

• Large total amount of data.

• Many databases (~230 PPI databases).

• Many names (LSID, URLs, local ids).• Many names (LSID, URLs, local ids).

• Many different semantics (text, vocabulary, data 
models, ontologies).

• Variety of quality (missing data, incorrect, 
manually/automatically created).

• Varying provenance (sometimes none at all).

• Changing or incomplete domain knowledge.
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Motivation (continued)

• Why does Scale Matter?

– Improved coverage as there is not much overlap 

between data sets.

– Greater confidence by verifying the data and our – Greater confidence by verifying the data and our 

model.

– Feedback to improve data quality.

– Leads to better queries:

• Find all mammalian protein-protein interactions.

• Find all interactions between 2 pathways.
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Scale-Out Architecture

• Add nodes to increase reliability, storage and processing without scaling 
out maintenance.

• Google
– 10,000 Distinct MapReduce Programs.

– 100,000 Jobs Executed/Day.

– 20 Petabytes of Data Processed/Day.

• Nutch Search Engine, IBM, Moreira and Michael et al• Nutch Search Engine, IBM, Moreira and Michael et al
– Newton’s Law beats Moore’s.

– Linear Scaling from 10 - ~2,000 nodes.

– Same price, scale out performs 4 times better.

• “Scientific Data Management in the Coming Decade”, Jim Grey et al
– Bandwidth ≥ Latency2.

– Better Metadata – better selectivity of data processing.

– Semantic Web should be used for common terminologies.

– MapReduce – bring computation to data.
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Technologies

• Hadoop

– MapReduce.

– HDFS (Hadoop Distributed File System).

• HBase

– A column database built on HDFS.

• ZooKeeper

– Distributed service co-ordination and configuration.

• Hosting

– Local Cluster, Amazon EC2, Google (one day App 
Engine?).
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What is an RDF Molecule?

• A way to decompose an RDF Graph, containing 
blank nodes, into subgraphs.

• Creates context for a blank node so they are 
globally addressable just like URIs and Literals.
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Diagram from: Ding, L., et al., “Tracking RDF Graph Provenance using RDF Molecules.”



An RDF Graph Across Computing 

Nodes
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Our Extensions

• Hierarchical Structure
– Molecules within molecules.

– Linking Triples (_1 context1 _2, _2 context2 _3).

– Reflects certain domain models (PPI).

• Ordering• Ordering
– By Most Grounded (head triple) to Least Grounded.

– By String Value.

• Algorithms
– Decomposition.

– Merging.
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Relational View of Integrated Data

“Protein” Intact MPact InterPro …

_1 ebi-25861 yjl047c ipr011991, 

ipr001373

…

_2 ebi-9648 ipr000648 …

_3 ebi-3727 yer114c ipr011993,

ipr011510,

ipr001849,

ipr001660,

ipr001452

…
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Graph View of Integrated Data
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Advantages of RDF Molecules

• Lightweight context, without names.

• Distributed Processing

– Enough context without requiring the entire graph.

– Allows answers to be combined from many nodes.

• Conceptual Integration • Conceptual Integration 

– Many names, many databases reference the same thing.

– Find inconsistencies and remove or resolve them.

• Structural Integration 

– Lean Graph, merging removes redundant triples.

• Represents foreign key/multiple relations.
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Disadvantages of RDF Molecules

• Existing RDF graphs (“local graphs”) need to be 
converted to molecule based graphs (“global 
graphs”).

• Costs

Extra Join.– Extra Join.

– Redundancy Removal.

• General Problems

– Agree on structure and rewrite existing code.

– Lack of Blank Node Round Tripping in SPARQL requires 
subqueries or API usage.

13



The Ontology
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BioMANTA Extensions

• Instances of classes e.g. Experimental Methods from 
BioPAX ontology.

• DisjointClasses(Experimental Observation, Unspecified 
Observation, Predicted Observation, Inferred Observation)
– Allows n-ary, multiple observations of the same interaction.

– Context:– Context:
• sourceOfData - identity of 3rd party resource.

• observedCellType - the cell type in which the experimental 
observation occurred.

• method type – the type of evidence for a particular observation type 
(e.g. experimentalMethod, inferenceMethod, etc).

• subCellularLocalisation - a BioPAX entity, with a range from Gene 
Ontology's cellular component hierarchy.

– Inferred Observations - from ontological (OWL) classification.

– Predicted Observations - from data analysis or data mining.
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Integration Process

• PSI-MI to RDF
– XML to RDF

• Add UniProt to Local Protein IDs
– Local ID → UniProtID

• Add Sequence to Local Protein IDs• Add Sequence to Local Protein IDs
– Local ID → Sequence

• Protein Merging
– Create Molecules.

– Merge based on UniProt ID and Sequence.

– Those with the same UniProt IDs but different 
Sequences are “warnings” and are to be removed.
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Integrated PPI Data Sourcess
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Protein Merge Performance
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Interesting Dataset Characteristics

• One DIP File: 12 450 proteins, 60 duplicate pairs of 
proteins (~0.5%).

• IntAct and DIP have multiple IDs per UniProt ID.

• DIP, IntAct, MINT: 13 430 proteins, 290 Merged 
(~2%), 10 differed (MINT).(~2%), 10 differed (MINT).

• Two IntAct Yeast Files:

Yeast 1 Yeast 2 Processed Removed

No. triples 27582 50267 77849 7206 (~9%)

No. proteins 503 893 1396 85 (~6 %)
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Conclusions

• Scale-out architecture provides improved 
performance and reliability but demands 
restricted programming interfaces and data 
structures.

• RDF Molecules provide a way to do distributed 
processing over RDF sub-graphs.

• Our model utilizes RDF Molecules to integrate 
disparate datasets and produce a large 
amount of easily extensible provenance data.
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Links

Web Site

• http://biomanta.org/

ResultsResults

• http://biomanta.org/downloads/

JRDF

• http://jrdf.sf.net/
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